Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application

被引:12
作者
Matras-Postolek, Katarzyna [1 ,2 ]
Bogdal, Dariusz [1 ]
机构
[1] Cracow Univ Technol, Fac Chem Engn & Technol, PL-31155 Krakow, Poland
[2] Univ Appl Sci, Dept Chem Engn, Fachhsch Munster, D-48565 Steinfurt, Germany
来源
POLYMER CHARACTERIZATION: RHEOLOGY, LASER INTERFEROMETRY, ELECTROOPTICS | 2010年 / 230卷
关键词
Conjugated polymer; Fullerene; Nanocomposites; Nanocrystals; Nanotube; Non-conjugated; Polymer semiconductor; ZNS-MN NANOCRYSTALS; WALLED CARBON NANOTUBES; HYBRID SOLAR-CELLS; CDSE QUANTUM DOTS; OXIDE THIN-FILMS; MECHANICAL-PROPERTIES; OPTICAL-PROPERTIES; TITANIUM-DIOXIDE; ELECTRICAL-PROPERTIES; CONJUGATED POLYMER;
D O I
10.1007/12_2010_49
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This review concentrates on semiconductors and carbon nanotubes as the inorganic component of organic-inorganic nanomaterials. One of the cornerstones of the current push towards future improvements in electronics and in optics technology is the decrease in size of the various components used for device manufacture. This paper discusses the character of nanocomposites for optics and electronics, their preparation, and the properties of semiconductor nanoparticles such as ZnS, ZnO, ZnS:Mn, TiO2, CdSe, and CdS. Research in this area has shown the great potential advantages of novel materials composed of semiconductor nanocrystals and a polymer matrix. A short characterization of the nature of carbon-based materials (i.e., fullerenes and nanotubes) is given to provide a brief review of these materials. Then, the characterization of non-conjugated (PMMA, PS, and PVDF) and conjugated (PT, PVK, PPV, and PANI) polymer matrices and nanocomposites is described. Finally, the most advanced applications of the nanocomposites are presented.
引用
收藏
页码:221 / 282
页数:62
相关论文
共 329 条
[1]  
Abou El-Ela FM, 2000, EGYPT J SOL, V23, P27
[2]   Structural and luminescence properties of nanostructured ZnS:Mn [J].
Adachi, D ;
Hasui, S ;
Toyama, T ;
Okamoto, H .
APPLIED PHYSICS LETTERS, 2000, 77 (09) :1301-1303
[3]   Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices [J].
Adamopoulos, G. ;
Heiser, T. ;
Giovanella, U. ;
Ould-Saad, S. ;
van de Wetering, K. I. ;
Brochon, C. ;
Zorba, I. ;
Paraskevopoulos, K. M. ;
Hadziioannou, G. .
THIN SOLID FILMS, 2006, 511 :371-376
[4]   Doping and conductivity studies on poly(p-phenylene vinylene) [J].
Ahlskog, M ;
Reghu, M ;
Noguchi, T ;
Ohnishi, T .
SYNTHETIC METALS, 1997, 89 (01) :11-15
[5]   Comparison of normal and inverse poly(3-hexylthiophene)/fullerene solar cell architectures [J].
Al-Ibrahim, M ;
Sensfuss, S ;
Uziel, J ;
Ecke, G ;
Ambacher, O .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 85 (02) :277-283
[6]   Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites [J].
Althues, H ;
Palkovits, R ;
Rumplecker, A ;
Simon, P ;
Sigle, W ;
Bredol, M ;
Kynast, U ;
Kaskel, S .
CHEMISTRY OF MATERIALS, 2006, 18 (04) :1068-1072
[7]   Heteropolyacid-impregnated PVDF as a solid polymer electrolyte for dye-sensitized solar cells [J].
Anandan, S. ;
Pitchumani, S. ;
Muthuraaman, B. ;
Maruthamuthu, P. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (12) :1715-1720
[8]  
[Anonymous], 2003, Nanocomposite science and technology
[9]  
[Anonymous], [No title captured]
[10]   Laser-induced nanocomposite formation for printed nanoelectronics [J].
Antolini, F ;
Ghezelbash, A ;
Esposito, C ;
Trave, E ;
Tapfer, L ;
Korgel, BA .
MATERIALS LETTERS, 2006, 60 (08) :1095-1098