Large Normally Hyperbolic Cylinders in a priori Stable Hamiltonian Systems

被引:7
作者
Bernard, Patrick [1 ]
机构
[1] CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
来源
ANNALES HENRI POINCARE | 2010年 / 11卷 / 05期
关键词
CONNECTING ORBITS; DIFFUSION; MANIFOLDS; FLOWS;
D O I
10.1007/s00023-010-0040-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of normally hyperbolic cylinders in a priori stable Hamiltonian systems the size of which is bounded from below independently of the size of the perturbation. This result should have applications to the study of Arnold's diffusion.
引用
收藏
页码:929 / 942
页数:14
相关论文
共 18 条
[1]  
[Anonymous], **NON-TRADITIONAL**
[2]  
Arnold V. I., 1964, Sov. Math. Doklady, V5, P581
[3]   Connecting orbits of time dependent Lagrangian systems [J].
Bernard, P .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (05) :1533-+
[4]  
BERNARD P, 2008, J AMS, V21, P625
[5]   REMARKS ON THE DEFINITION OF HYPERBOLIC TORI OF HAMILTONIAN SYSTEMS [J].
Bolotin, S. V. ;
Treschev, D. V. .
REGULAR & CHAOTIC DYNAMICS, 2000, 5 (04) :401-412
[6]   Stable manifolds and the Perron-Irwin method [J].
Chaperon, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :1359-1394
[7]  
Cheng CQ, 2009, J DIFFER GEOM, V82, P229
[8]  
Cheng CQ, 2004, J DIFFER GEOM, V67, P457
[9]   Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows [J].
Delshams, A ;
de la Llave, R ;
Seara, TM .
ADVANCES IN MATHEMATICS, 2006, 202 (01) :64-188
[10]  
DELSHAMS A, 2006, MEM AMS, V179