A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media

被引:41
作者
Ambartsumyan, Ilona [1 ,2 ]
Ervin, Vincent J. [3 ]
Truong Nguyen [2 ]
Yotov, Ivan [2 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[3] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
Fluid-poroelastic structure interaction; Stokes-Biot model; fractured poroelastic media; non-Newtonian fluid; FLOW; APPROXIMATION; INTERPOLATION; SURFACE;
D O I
10.1051/m2an/2019061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop and analyze a model for the interaction of a quasi-Newtonian free fluid with a poroelastic medium. The flow in the fluid region is described by the nonlinear Stokes equations and in the poroelastic medium by the nonlinear quasi-static Biot model. Equilibrium and kinematic conditions are imposed on the interface. We establish existence and uniqueness of a solution to the weak formulation and its semidiscrete continuous-in-time finite element approximation. We present error analysis, complemented by numerical experiments.
引用
收藏
页码:1915 / 1955
页数:41
相关论文
共 47 条
[1]  
Acosta G, 2011, MATH COMPUT, V80, P141
[2]   A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Yotov, Ivan ;
Zunino, Paolo .
NUMERISCHE MATHEMATIK, 2018, 140 (02) :513-553
[3]   Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction [J].
Badia, Santiago ;
Quaini, Annalisa ;
Quarteroni, Alfio .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) :7986-8014
[4]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[5]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[6]   Analysis of finite element approximation of evolution problems in mixed form [J].
Boffi, D ;
Gastaldi, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1502-1526
[7]  
BOFFI D., 2013, SPRINGER SER COMPUT, V44, DOI [10.1007/978-3-642-36519-5, DOI 10.1007/978-3-642-36519-5]
[8]  
Brezzi F., 2008, Mixed finite elements, compatibility conditions, and applications
[9]   Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach [J].
Bukac, M. ;
Yotov, I. ;
Zakerzadeh, R. ;
Zunino, P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 292 :138-170
[10]   DIMENSIONAL MODEL REDUCTION FOR FLOW THROUGH FRACTURES IN POROELASTIC MEDIA [J].
Bukac, Martina ;
Yotov, Ivan ;
Zunino, Paolo .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2017, 51 (04) :1429-1471