DOUBLY ROBUST REGRESSION ANALYSIS FOR DATA FUSION

被引:6
作者
Evans, Katherine [1 ,6 ]
Sun, BaoLuo [2 ]
Robins, James [3 ,4 ]
Tchetgen, Eric J. Tchetgen [5 ]
机构
[1] Verily Life Sci, San Francisco, CA USA
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119077, Singapore
[3] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[5] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[6] 38 Joe Shuster Way 1629, Toronto, ON M6K 0A5, Canada
关键词
Data fusion; doubly robust; MENDELIAN RANDOMIZATION; INSTRUMENTAL VARIABLES; MODELS;
D O I
10.5705/ss.202018.0334
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study investigates parametric inferences for the regression of an outcome variable Y on covariates (V, L). Here, the data are fused from two separate sources, one of which contains information only on (V, Y), while the other contains information only on the covariates. This setting may be viewed as an extreme form of missing data in which the probability of observing complete data (V, L, Y) on any given subject is zero. We develop a large class of semiparametric estimators, including doubly robust estimators, of the regression coefficients in the fused data. The proposed method is doubly robust in that it is consistent and asymptotically normal if, in addition to the model of interest, we correctly specify a model for either the data source process under an ignorability assumption, or the distribution of the unobserved covariates. We evaluate the performance of our estimators using an extensive simulation study. Then, we apply the proposed methods to investigate the relationship between net asset value and total expenditure among U.S. households in 1998, while controlling for potential confounders, including income and other demographic variables.
引用
收藏
页码:1285 / 1307
页数:23
相关论文
共 36 条
[1]  
ANGRIST JD, 1992, J AM STAT ASSOC, V87, P328
[2]  
[Anonymous], 2014, STAT ANAL MISSING DA
[3]   Housing wealth, financial wealth, and consumption: New evidence from micro data [J].
Bostic, Raphael ;
Gabriel, Stuart ;
Painter, Gary .
REGIONAL SCIENCE AND URBAN ECONOMICS, 2009, 39 (01) :79-89
[4]   A review of instrumental variable estimators for Mendelian randomization [J].
Burgess, Stephen ;
Small, Dylan S. ;
Thompson, Simon G. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (05) :2333-2355
[5]   Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-Level Information From External Big Data Sources [J].
Chatterjee, Nilanjan ;
Chen, Yi-Hau ;
Maas, Paige ;
Carroll, Raymond J. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (513) :107-117
[6]   Statistical Matching Analysis for Complex Survey Data With Applications [J].
Conti, Pier Luigi ;
Marella, Daniela ;
Scanu, Mauro .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (516) :1715-1725
[7]   A guide to systematic review and meta-analysis of prediction model performance [J].
Debray, Thomas P. A. ;
Damen, Johanna A. A. G. ;
Snell, Kym I. E. ;
Ensor, Joie ;
Hooft, Lotty ;
Reitsma, Johannes B. ;
Riley, Richard D. ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 356
[8]   A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis [J].
Debray, Thomas P. A. ;
Moons, Karel G. M. ;
Ahmed, Ikhlaaq ;
Koffijberg, Hendrik ;
Riley, Richard David .
STATISTICS IN MEDICINE, 2013, 32 (18) :3158-3180
[9]  
DOrazio Marcello, 2006, Statistical matching: Theory and practice, DOI DOI 10.1002/0470023554
[10]  
DOrazio Marcello., 2010, P 45 RIUNIONE SCIENT, P16