Regularity of the degenerate Monge-Ampere equation on compact Kahler manifolds

被引:18
作者
Blocki, Z [1 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30059 Krakow, Poland
关键词
Local Regularity; Nondegenerate Case; Lipschitz Regularity; Degenerate Complex;
D O I
10.1007/s00209-002-0483-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the C-1,C-1 and Lipschitz regularity of the solutions of the degenerate complex Monge-Ampere equation on compact Kahler manifolds. In particular, in view of the local regularity for the complex Monge-Ampere equation, the obtained C-1,C-1 regularity is a generalization of the Yau theorem which deals with the nondegenerate case.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 9 条
[1]  
[Anonymous], CONT MATH
[2]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[3]  
BLOCKI Z, 2002, UNIQUENESS STABILITY
[4]   On the Dirichlet problem for degenerate Monge-Ampere equations [J].
Guan, PF ;
Trudinger, NS ;
Wang, XJ .
ACTA MATHEMATICA, 1999, 182 (01) :87-104
[5]   C-2 a priori estimates for degenerate Monge-Ampere equations [J].
Guan, PF .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (02) :323-346
[6]   The complex Monge-Ampere equation [J].
Kolodziej, S .
ACTA MATHEMATICA, 1998, 180 (01) :69-117
[7]  
KOLODZIEJ S, 200107 IMUJ
[8]  
Tian G., 2000, CANONICAL METRICS KA
[9]   RICCI CURVATURE OF A COMPACT KAHLER MANIFOLD AND COMPLEX MONGE-AMPERE EQUATION .1. [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) :339-411