Surface dual-shell construction enhances the electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials

被引:9
作者
Chen, Yongxiang [1 ]
Li, Yunjiao [1 ]
Zheng, Junchao [1 ]
Li, Wei [1 ,2 ]
Luo, Linshan [3 ]
Yang, Jiachao [1 ]
Liu, Shuaiwei [1 ]
Xiong, Yike [1 ]
Wang, Shan [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Citic Dameng Min Ind Ltd, Nanning 530028, Peoples R China
[3] Xiamen Univ, Coll Phys Sci & Technol, Xiamen 361005, Peoples R China
关键词
Lithium- and manganese-rich cathodes; Dual-shell modification; Electrochemical performance; Lithium-ion batteries; RICH LAYERED-OXIDE; MN-RICH; CYCLING STABILITY; RATE CAPABILITY; VOLTAGE DECAY; LI; LINI0.5CO0.2MN0.3O2; INTERFACE; NH4F; CO2;
D O I
10.1016/j.electacta.2020.136082
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High-capacity lithium- and manganese-rich cathodes play a critical role in the development of the advanced Li-ion batteries. However, the severe capacity fading and voltage decay impede their commercial applications. Herein, the vacancy-enriched Li1.2Ni0.13Co0.13Mn0.54O2 cathodes with spinet/defective structure shell are realized by the gas-solid reactions (GSR) and the followed Li-Nb-0 coating shell coated Li1.2Ni0.13Co0.13Mn0.54O2 cathodes are achieved by a liquid coating process (LCP). The dual-shell modified Li1.2Ni0.13Co0.13Mn0.54O2 cathodes can deliver 219.5 mAh.g (-1 )at 250 mA.g( -1) and corresponding to 96.44% capacity retentions after 100 cycles over 2.0-4.6 V, far higher than those (212.3 mAh.g(-1) and 83.09%) of the pristine Li1.2Ni0.13Co0.13Mn0.54O2 cathode material. Even at 1250 mA the capacity retentions also improve from 50.68% to 95.92% after 100 cycles. The enhanced electrochemical performances are mainly ascribed to the enhanced structural stability and the suppressed harmful side-reactions/transition metal dissolutions. The construction of the dual shells provides an effective method to optimize the interfacial structure of Li- and Mn-rich cathode material and other cathode materials. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode [J].
Cai, Yuxin ;
Ku, Lun ;
Wang, Laisen ;
Ma, Yating ;
Zheng, Hongfei ;
Xu, Wanjie ;
Han, Jiangtao ;
Qu, Baihua ;
Chen, Yuanzhi ;
Xie, Qingshui ;
Peng, Dong-Liang .
SCIENCE CHINA-MATERIALS, 2019, 62 (10) :1374-1384
[2]   Chemical coupling constructs amorphous silica modified LiNi0.6Co0.2Mn0.2O2 cathode materials and its electrochemical performances [J].
Chen, Yongxiang ;
Tang, Shuyun ;
Deng, Shiyi ;
Lei, Tongxing ;
Li, Yunjiao ;
Li, Wei ;
Cao, Guolin ;
Zhu, Jie ;
Zhang, Jinping .
JOURNAL OF POWER SOURCES, 2019, 431 :8-16
[3]   Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation [J].
Chen, Yongxiang ;
Li, Puliang ;
Li, Yunjiao ;
Su, Qianye ;
Xue, Longlong ;
Han, Qiang ;
Cao, Guoling ;
Li, Jianguo .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (03) :2115-2126
[4]   Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage [J].
Ding, Zhengping ;
Zhang, Chunxiao ;
Xu, Sheng ;
Liu, Jiatu ;
Liang, Chaoping ;
Chen, Libao ;
Wang, Peng ;
Ivey, Douglas G. ;
Deng, Yida ;
Wei, Weifeng .
ENERGY STORAGE MATERIALS, 2019, 21 :69-76
[5]   High-Temperature Treatment of Li-Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling [J].
Erickson, Evan M. ;
Sclar, Hadar ;
Schipper, Florian ;
Liu, Jing ;
Tian, Ruiyuan ;
Ghanty, Chandan ;
Burstein, Larisa ;
Leifer, Nicole ;
Grinblat, Judith ;
Talianker, Michael ;
Shin, Ji-Yong ;
Lampert, Jordan K. ;
Markovsky, Boris ;
Frenkel, Anatoly I. ;
Aurbach, Doron .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[6]   Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage [J].
Fu, Jiale ;
Mu, Daobin ;
Wu, Borong ;
Bi, Jiaying ;
Cui, Hui ;
Yang, Hao ;
Wu, Hanfeng ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :19704-19711
[7]   Impedance spectroscopic study of the charge transfer resistance at the interface between a LiNi0.5Mn1.5O4 high-voltage cathode film and a LiNbO3 coating film [J].
Gellert, Michael ;
Gries, Katharina I. ;
Sann, Joachim ;
Pfeifer, Erik ;
Volz, Kerstin ;
Roling, Bernhard .
SOLID STATE IONICS, 2016, 287 :8-12
[8]   Improving the electrochemical properties of Mn-rich Li1.20[Mn0.54Ni0.13Co0.13]O2 by Nb and F co-doping [J].
Gu, Haidong ;
Liu, Tingrui ;
Liu, Tingting ;
Zhou, Yuyang ;
Xu, Ming ;
Chen, Feng .
SOLID STATE IONICS, 2019, 336 :129-138
[9]   Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials [J].
Guo, Haocheng ;
Wei, Zhen ;
Jia, Kai ;
Qiu, Bao ;
Yin, Chong ;
Meng, Fanqi ;
Zhang, Qinghua ;
Gu, Lin ;
Han, Shaojie ;
Liu, Yan ;
Zhao, Hu ;
Jiang, Wei ;
Cui, Hongfu ;
Xia, Yonggao ;
Liu, Zhaoping .
ENERGY STORAGE MATERIALS, 2019, 16 :220-227
[10]   Facile synthesis of Li-rich layered oxides with spinel-structure decoration as high-rate cathode for lithium-ion batteries [J].
Han, Jiangtao ;
Zheng, Hongfei ;
Hu, Zhenyu ;
Luo, Xianrui ;
Ma, Yating ;
Xie, Qingshui ;
Peng, Dong-Liang ;
Yue, Guanghui .
ELECTROCHIMICA ACTA, 2019, 299 :844-852