Rare Cell Proteomic Reactor Applied to Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Quantitative Proteomics Study of Human Embryonic Stem Cell Differentiation

被引:45
|
作者
Tian, Ruijun [1 ,2 ]
Wang, Shuai [1 ,2 ]
Elisma, Fred [1 ,2 ]
Li, Li [1 ,2 ]
Zhou, Hu [1 ,2 ]
Wang, Lisheng [1 ,2 ]
Figeys, Daniel [1 ,2 ,3 ]
机构
[1] Ottawa Inst Syst Biol, Ottawa, ON K1H 8M5, Canada
[2] Univ Ottawa, Dept Biochem Microbiol & Immunol, Fac Med, Ottawa, ON K1H 8M5, Canada
[3] Univ Ottawa, Fac Sci, Dept Chem, Ottawa, ON K1N 6N510, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
SELF-RENEWAL; MASS-SPECTROMETRY; WNT/BETA-CATENIN; GENE-EXPRESSION; GROWTH; IDENTIFICATION; SILAC; LINES; PHOSPHORYLATION; PLURIPOTENCY;
D O I
10.1074/mcp.M110.000679
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The molecular basis governing the differentiation of human embryonic stem cells (hESCs) remains largely unknown. Systems-level analysis by proteomics provides a unique approach to tackle this question. However, the requirement of a large number of cells for proteomics analysis (i.e. 106-107 cells) makes this assay challenging, especially for the study of rare events during hESCs lineage specification. Here, a fully integrated proteomics sample processing and analysis platform, termed rare cell proteomic reactor (RCPR), was developed for large scale quantitative proteomics analysis of hESCs with similar to 50,000 cells. hESCs were completely extracted by a defined lysis buffer, and all of the proteomics sample processing procedures, including protein preconcentration, reduction, alkylation, and digestion, were integrated into one single capillary column with a strong cation exchange monolith matrix. Furthermore, on-line two-dimensional LC-MS/MS analysis was performed directly using RCPR as the first dimension strong cation exchange column. 2,281 unique proteins were identified on this system using only 50,000 hESCs. For stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative study, a ready-to-use and chemically defined medium and an in situ differentiation procedure were developed for complete SILAC labeling of hESCs with well characterized self-renewal and differentiation properties. Mesoderm-enriched differentiation was studied by RCPR using 50,000 hESCs, and 1,086 proteins were quantified with a minimum of two peptides per protein. Of these, 56 proteins exhibited significant changes during mesoderm-enriched differentiation, and eight proteins were demonstrated for the first time to be overexpressed during early mesoderm development. This work provides a new platform for the study of rare cells and in particular for further elucidating proteins that govern the mesoderm lineage specification of human pluripotent stem cells. Molecular & Cellular Proteomics 10:10.1074/mcp.M110.000679, 1-10, 2011.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] An Enhanced In Vivo Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Model for Quantification of Drug Metabolism Enzymes
    MacLeod, A. Kenneth
    Fallon, Padraic G.
    Sharp, Sheila
    Henderson, Colin J.
    Wolf, C. Roland
    Huang, Jeffrey T. -J.
    MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (03) : 750 - 760
  • [22] Quantitative Proteomic Analysis of Human Embryonic Stem Cell Differentiation by 8-Plex iTRAQ Labelling
    Jadaliha, Mahdieh
    Lee, Hyoung-Joo
    Pakzad, Mohammad
    Fathi, Ali
    Jeong, Seul-Ki
    Cho, Sang-Yun
    Baharvand, Hossein
    Paik, Young-Ki
    Salekdeh, Ghasem Hosseini
    PLOS ONE, 2012, 7 (06):
  • [23] Determination of an Angiotensin II-regulated Proteome in Primary Human Kidney Cells by Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC)
    Konvalinka, Ana
    Zhou, Joyce
    Dimitromanolakis, Apostolos
    Drabovich, Andrei P.
    Fang, Fei
    Gurley, Susan
    Coffman, Thomas
    John, Rohan
    Zhang, Shao-Ling
    Diamandis, Eleftherios P.
    Scholey, James W.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (34) : 24834 - 24847
  • [24] Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS
    Zhang, Hong-Hai
    Lechuga, Thomas J.
    Chen, Yuezhou
    Yang, Yingying
    Huang, Lan
    Chen, Dong-Bao
    BIOLOGY OF REPRODUCTION, 2016, 94 (05)
  • [25] Intercellular Transfer of Proteins as Identified by Stable Isotope Labeling of Amino Acids in Cell Culture
    Li, Ming
    Aliotta, Jason M.
    Asara, John M.
    Wu, Qian
    Dooner, Mark S.
    Tucker, Lynne D.
    Wells, Alan
    Quesenberry, Peter J.
    Ramratnam, Bharat
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (09) : 6285 - 6297
  • [26] Quantitative temporal proteomic analysis of human embryonic stem cell differentiation into oligodendrocyte progenitor cells
    Chaerkady, Raghothama
    Letzen, Brian
    Renuse, Santosh
    Sahasrabuddhe, Nandini A.
    Kumar, Praveen
    All, Angelo H.
    Thakor, Nitish V.
    Delanghe, Bernard
    Gearhart, John D.
    Pandey, Akhilesh
    Kerr, Candace L.
    PROTEOMICS, 2011, 11 (20) : 4007 - 4020
  • [27] Mass-Spectrometric Evaluation of the African Swine Fever Virus-Induced Host Shutoff Using Dynamic Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)
    Woehnke, Elisabeth
    Klupp, Barbara G.
    Blome, Sandra
    Mettenleiter, Thomas C.
    Karger, Axel
    VIRUSES-BASEL, 2023, 15 (06):
  • [28] Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC)
    Lamoureux, F.
    Gastinel, L. N.
    Mestre, E.
    Marquet, P.
    Essig, M.
    JOURNAL OF PROTEOMICS, 2012, 75 (12) : 3674 - 3687
  • [29] Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC)
    Foster, LJ
    Rudich, A
    Talior, I
    Patel, N
    Huang, XD
    Furtado, LM
    Bilan, PJ
    Mann, M
    Klip, A
    JOURNAL OF PROTEOME RESEARCH, 2006, 5 (01) : 64 - 75
  • [30] Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-Based Strategy for Proteome-Wide Thermodynamic Analysis of Protein-Ligand Binding Interactions
    Tran, Duc T.
    Adhikari, Jagat
    Fitzgerald, Michael C.
    MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (07) : 1800 - 1813