Algebraic numbers, transcendental numbers and elliptic curves derived from infinite products

被引:0
作者
Kim, D [1 ]
Koo, JK
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[2] Chonbuk Natl Univ, Dept Math, Chonju 561756, South Korea
关键词
infinite product; transcendental number; elliptic curve; RAMANUJAN;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be an imaginary quadratic field, h the complex upper half plane, and let tau is an element of h boolean AND k, p = e(piitau). In this article, using the infinite product formulas for g(2) and g(3), we prove that values of certain infinite products are transcendental whenever tau are imaginary quadratic. And we derive analogous results of Berndt-Chan-Zhang ([4]). Also we find the values of Pi(n=1)(infinity)(1-p(2n-1)/1+p(2n-1))(8) and pPi(n=1)(infinity) (1 + p(2n))(12) when we know j (tau). And we construct an elliptic curve E : y(2) = x(3) + 3x(2) + (3 - j/2563)x + 1 with i = j(tau) not equal 0 and P = (16(2)P(2) Pi(n=1)(infinity)(1 + p(2n)) (24), 0) is an element of E.
引用
收藏
页码:977 / 998
页数:22
相关论文
共 23 条
[1]  
[Anonymous], 1978, COURSE MODERN ANAL
[2]  
[Anonymous], 1957, Introduction to Number Theory
[3]  
[Anonymous], P INT C MATH ZUR 199
[4]  
[Anonymous], 1997, Elliptic curves
[5]  
[Anonymous], 1994, GRAD TEXTS MATH
[6]   Proof of the Mahler-Manin conjecture [J].
BarreSireix, K ;
Diaz, G ;
Gramain, F ;
Philibert, G .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :1-9
[7]  
Bateman H., 1953, Higher Transcendental Functions, V2
[8]  
Berndt B. C., 1991, Ramanujans Notebooks, DOI DOI 10.1007/978-1-4612-0965-2
[9]   Ramanujan's remarkable product of theta-functions [J].
Berndt, BC ;
Chan, HH ;
Zhang, LC .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1997, 40 :583-612
[10]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213