Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to Bayesian optimization

被引:54
作者
Goury, Olivier [1 ,2 ,3 ]
Amsallem, David [4 ]
Bordas, Stephane Pierre Alain [1 ,5 ]
Liu, Wing Kam [6 ]
Kerfriden, Pierre [1 ]
机构
[1] Cardiff Univ, Sch Engn, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales
[2] Inria Lille Nord Europe, DEFROST Team, 40 Ave Halley, F-59000 Lille, France
[3] Univ Paris 06, UMR S 1159, INSERM, F-75005 Paris, France
[4] Stanford Univ, Dept Aeronaut & Astronaut, Mail Code 4035, Stanford, CA 94305 USA
[5] Univ Luxembourg, Campus Kirchberg G 007, Luxembourg, Luxembourg
[6] Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Model order reduction; Computational homogenisation; Reduced basis; Hyperreduction; Damage mechanics; Multiscale; PROPER ORTHOGONAL DECOMPOSITION; TRANSFORMATION FIELD ANALYSIS; PARTIAL-DIFFERENTIAL-EQUATIONS; EMPIRICAL INTERPOLATION; HETEROGENEOUS MATERIALS; COMPOSITE-MATERIALS; HOMOGENIZATION; REDUCTION; FRACTURE; PROJECTION;
D O I
10.1007/s00466-016-1290-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present new reliable model order reduction strategies for computational micromechanics. The difficulties rely mainly upon the high dimensionality of the parameter space represented by any load path applied onto the representative volume element. We take special care of the challenge of selecting an exhaustive snapshot set. This is treated by first using a random sampling of energy dissipating load paths and then in a more advanced way using Bayesian optimization associated with an interlocked division of the parameter space. Results show that we can insure the selection of an exhaustive snapshot set from which a reliable reduced-order model can be built.
引用
收藏
页码:213 / 234
页数:22
相关论文
共 57 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
[Anonymous], 2002, THEORY COMPOSITES
[3]   Improved lattice model for concrete fracture [J].
Arslan, A ;
Ince, R ;
Karihaloo, BL .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2002, 128 (01) :57-65
[4]   Missing Point Estimation in Models Described by Proper Orthogonal Decomposition [J].
Astrid, Patricia ;
Weiland, Siep ;
Willcox, Karen ;
Backx, Ton .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (10) :2237-2251
[5]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[6]   THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS [J].
BERKOOZ, G ;
HOLMES, P ;
LUMLEY, JL .
ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 :539-575
[7]   Towards an adaptive POD/SVD surrogate model for aeronautic design [J].
Braconnier, T. ;
Ferrier, M. ;
Jouhaud, J. -C. ;
Montagnac, M. ;
Sagaut, P. .
COMPUTERS & FLUIDS, 2011, 40 (01) :195-209
[8]   MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE [J].
Bui-Thanh, T. ;
Willcox, K. ;
Ghattas, O. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06) :3270-3288
[9]  
Buryachenko VA., 2007, Micromechanics of heterogeneous materials
[10]   Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations [J].
Carlberg, Kevin ;
Bou-Mosleh, Charbel ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (02) :155-181