Reliability of finite element methods for thin shells

被引:0
作者
Chapelle, D [1 ]
机构
[1] INRIA, Rocquencourt, France
来源
COMPUTATIONAL MECHANICS FOR THE TWENTY-FIRST CENTURY | 2000年
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We recall some fundamental considerations on the behaviour of the exact and approximate (finite element) solutions of shell models in order to introduce and analyse the issue of the reliability of shell finite elements when the thickness of the structure becomes small. We then present a methodology and guidelines for progressing in the quest for more reliable procedures.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 24 条
[1]   Locking-free finite element methods for shells [J].
Arnold, DN ;
Brezzi, F .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :1-14
[2]   Asymptotic analysis of the boundary layer for the reissner-mindlin plate model [J].
Arnold, DN ;
Falk, RS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :486-514
[3]  
BAIOCCHI C, 1996, IN PRESS SHELL CLASS
[4]  
Bathe K.J., 2006, Finite Element Procedures
[5]  
Bernadou M., 1996, FINITE ELEMENT METHO
[6]   On the classification of linearly elastic shells [J].
Blouza, A ;
Brezzi, F ;
Lovadina, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (09) :831-836
[7]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[8]  
Chapelle D, 2000, INT J NUMER METH ENG, V48, P289, DOI 10.1002/(SICI)1097-0207(20000520)48:2<289::AID-NME897>3.0.CO
[9]  
2-8
[10]   Stabilized finite element formulations for shells in a bending dominated state [J].
Chapelle, D ;
Stenberg, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :32-73