Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice

被引:25
作者
Ramazanov, M. K. [1 ]
Murtazaev, A. K. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Phys, Dagestan Sci Ctr, Makhachkala 367003, Russia
[2] Dagestan State Univ, Makhachkala 367025, Russia
基金
俄罗斯基础研究基金会;
关键词
ISING-MODEL; MONTE-CARLO; SQUARE LATTICE;
D O I
10.1134/S0021364017140107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice with allowance for intralayer next nearest neighbor interactions have been studied using the replica Monte Carlo algorithm. The character of phase transitions has been analyzed using the histogram method and the Binder cumulant method. It has been found that a transition from the collinear to paramagnetic phase in the model under study occurs as a second order phase transition. The statistical critical exponents of the specific heat alpha, susceptibility gamma, order parameter beta, and correlation radius nu, as well as the Fisher index eta, have been calculated using the finite-size scaling theory. It has been shown that the three-dimensional Heisenberg model on the layered cubic lattice with allowance for the next nearest neighbor interaction belongs to the same universality class of the critical behavior as the antiferromagnetic Heisenberg model on a layered triangular lattice.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 35 条
[1]  
[Anonymous], MONTE CARLO SIMULATI
[2]  
[Anonymous], 1995, PHYS USP
[3]   Phase transitions and critical properties in the antiferromagnetic Ising model on a layered triangular lattice with allowance for intralayer next-nearest-neighbor interactions [J].
Badiev, M. K. ;
Murtazaev, A. K. ;
Ramazanov, M. K. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2016, 123 (04) :623-628
[4]   Critical behavior of O(2)⊗O(N) symmetric models -: art. no. 174439 [J].
Calabrese, P ;
Parruccini, P ;
Pelissetto, A ;
Vicari, E .
PHYSICAL REVIEW B, 2004, 70 (17) :1-23
[5]   Critical exponents and equation of state of the three-dimensional Heisenberg universality class [J].
Campostrini, M ;
Hasenbusch, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW B, 2002, 65 (14) :1-21
[6]   Phase transitions in the frustrated Ising model on the square lattice [J].
Jin, Songbo ;
Sen, Arnab ;
Guo, Wenan ;
Sandvik, Anders W. .
PHYSICAL REVIEW B, 2013, 87 (14)
[7]   Ashkin-Teller Criticality and Pseudo-First-Order Behavior in a Frustrated Ising Model on the Square Lattice [J].
Jin, Songbo ;
Sen, Arnab ;
Sandvik, Anders W. .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[8]   Location of the Potts-critical end point in the frustrated Ising model on the square lattice [J].
Kalz, Ansgar ;
Honecker, Andreas .
PHYSICAL REVIEW B, 2012, 86 (13)
[9]   Influence of field on frustrations in low-dimensional magnets [J].
Kassan-Ogly, F. A. ;
Filippov, B. N. ;
Murtazaev, A. K. ;
Ramazanov, M. K. ;
Badiev, M. K. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (21) :3418-3421
[10]   Phase transitions in two-dimensional systems with continuous degeneracy [J].
Korshunov, S. E. .
PHYSICS-USPEKHI, 2006, 49 (03) :225-262