Comparison of microinstability properties for stellarator magnetic geometries

被引:31
作者
Rewoldt, G [1 ]
Ku, LP [1 ]
Tang, WM [1 ]
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1063/1.2089247
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The microinstability properties of nine distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presence of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter eta equivalent to d ln T/d ln n, whereas for large values of eta, the mode is strongly unstable for all of the different magnetic geometries.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 28 条
[1]   METHODS FOR THE EFFICIENT CALCULATION OF THE (MHD) MAGNETOHYDRODYNAMIC STABILITY PROPERTIES OF MAGNETICALLY CONFINED FUSION PLASMAS [J].
ANDERSON, DV ;
COOPER, WA ;
GRUBER, R ;
MERAZZI, S ;
SCHWENN, U .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1990, 4 (03) :34-47
[2]   THE HELICALLY SYMMETRICAL EXPERIMENT, (HSX) GOALS, DESIGN AND STATUS [J].
ANDERSON, FSB ;
ALMAGRI, AF ;
ANDERSON, DT ;
MATTHEWS, PG ;
TALMADGE, JN ;
SHOHET, JL .
FUSION TECHNOLOGY, 1995, 27 :273-277
[3]  
BELLI EA, 2001, B AM PHYS SOC, V46, P232
[4]   GUIDING CENTER DRIFT EQUATIONS [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1980, 23 (05) :904-908
[5]   VARIATIONAL FORMULATION OF THE LINEAR MHD STABILITY OF 3D-PLASMAS WITH NONINTERACTING HOT-ELECTRONS [J].
COOPER, WA .
PLASMA PHYSICS AND CONTROLLED FUSION, 1992, 34 (06) :1011-1036
[6]   GENERAL-THEORY OF KINETIC BALLOONING MODES [J].
FRIEMAN, EA ;
REWOLDT, G ;
TANG, WM ;
GLASSER, AH .
PHYSICS OF FLUIDS, 1980, 23 (09) :1750-1769
[7]  
GRIEGER G, 1991, PLASMA PHYS CONTROLL, V3, P525
[8]   IMPROVED RADIAL DIFFERENCING FOR 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIUM CALCULATIONS [J].
HIRSHMAN, SP ;
SCHWENN, U ;
NUHRENBERG, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (02) :396-407
[9]   MOMCON - A SPECTRAL CODE FOR OBTAINING 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
LEE, DK .
COMPUTER PHYSICS COMMUNICATIONS, 1986, 39 (02) :161-172
[10]   Overview of the Large Helical Device project [J].
Iiyoshi, A ;
Komori, A ;
Ejiri, A ;
Emoto, M ;
Funaba, H ;
Goto, M ;
Ida, K ;
Idei, H ;
Inagaki, S ;
Kado, S ;
Kaneko, O ;
Kawahata, K ;
Kobuchi, T ;
Kubo, S ;
Kumazawa, R ;
Masuzaki, S ;
Minami, T ;
Miyazawa, J ;
Morisaki, T ;
Morita, S ;
Murakami, S ;
Muto, S ;
Mutoh, T ;
Nagayama, Y ;
Nakamura, Y ;
Nakanishi, H ;
Narihara, K ;
Nishirnura, K ;
Noda, N ;
Ohdachi, S ;
Ohyabu, N ;
Oka, Y ;
Osakabe, M ;
Ozaki, T ;
Peterson, BJ ;
Sagara, A ;
Sakakibara, S ;
Sakamoto, R ;
Sasao, H ;
Sasao, M ;
Sato, K ;
Sato, M ;
Seki, T ;
Shimozuma, T ;
Shoji, M ;
Suzuki, H ;
Takeiri, Y ;
Tanaka, E ;
Toi, K ;
Tokuzawa, T .
NUCLEAR FUSION, 1999, 39 (9Y) :1245-1256