Finite-temperature theory of the trapped two-dimensional Bose gas

被引:42
作者
Gies, C
van Zyl, BP
Morgan, SA
Hutchinson, DAW
机构
[1] Univ Otago, Dept Phys, Dunedin, New Zealand
[2] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
[3] UCL, Dept Phys & Astron, London WC1E 6BT, England
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevA.69.023616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a Hartree-Fock-Bogoliubov (HFB) theoretical treatment of the two-dimensional trapped Bose gas and indicate how semiclassical approximations to this and other formalisms have lead to confusion. We numerically obtain results for the quantum-mechanical HFB theory within the Popov approximation and show that the presence of the trap stabilizes the condensate against long wavelength fluctuations. These results are used to show where phase fluctuations lead to the formation of a quasicondensate.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Low dimensional Bose gases [J].
Al Khawaja, U. ;
Andersen, J.O. ;
Proukakis, N.P. ;
Stoof, H.T.C. .
Al Khawaja, U., 1600, American Physical Society (66) :136151-136151
[2]   BOSE-EINSTEIN CONDENSATION IN LOW-DIMENSIONAL TRAPS [J].
BAGNATO, V ;
KLEPPNER, D .
PHYSICAL REVIEW A, 1991, 44 (11) :7439-7441
[3]   Bose-Einstein condensation in a two-dimensional, trapped, interacting gas [J].
Bayindir, M ;
Tanatar, B .
PHYSICAL REVIEW A, 1998, 58 (04) :3134-3137
[4]  
BEREZINSKII VL, 1971, ZH EKSP TEOR FIZ, V32, P493
[5]   HARMONIC-POTENTIAL THEOREM - IMPLICATIONS FOR APPROXIMATE MANY-BODY THEORIES [J].
DOBSON, JF .
PHYSICAL REVIEW LETTERS, 1994, 73 (16) :2244-2247
[6]   The two-dimensional Bose-Einstein condensate [J].
Fernández, JP ;
Mullin, WJ .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 128 (5-6) :233-249
[7]   Realization of Bose-Einstein condensates in lower dimensions -: art. no. 130402 [J].
Görlitz, A ;
Vogels, JM ;
Leanhardt, AE ;
Raman, C ;
Gustavson, TL ;
Abo-Shaeer, JR ;
Chikkatur, AP ;
Gupta, S ;
Inouye, S ;
Rosenband, T ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 2001, 87 (13) :130402/1-130402/4
[8]   Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures [J].
Griffin, A .
PHYSICAL REVIEW B, 1996, 53 (14) :9341-9347
[9]   EXISTENCE OF LONG-RANGE ORDER IN 1 AND 2 DIMENSIONS [J].
HOHENBERG, PC .
PHYSICAL REVIEW, 1967, 158 (02) :383-+
[10]   Gapless mean-field theory of Bose-Einstein condensates [J].
Hutchinson, DAW ;
Burnett, K ;
Dodd, RJ ;
Morgan, SA ;
Rusch, M ;
Zaremba, E ;
Proukakis, NP ;
Edwards, M ;
Clark, CW .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :3825-3846