Robustness of the hybrid extragradient proximal-point algorithm

被引:10
作者
Burachik, RS [1 ]
Scheimberg, S
Svaiter, BF
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, Brazil
[2] Inst Matematica Pura & Aplicada, Rio De Janeiro, Brazil
关键词
maximal monotone operators; proximal-point algorithm; extragradient method; enlargement of a maximal monotone operator;
D O I
10.1023/A:1017523331361
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The hybrid extragradient proximal-point method recently proposed by Solodov and Svaiter has the distinctive feature of allowing a relative error tolerance. We extend the error tolerance of this method, proving that it converges even if a summable error is added to the relative error. Furthermore, the extragradient step may be performed inexactly with a summable error. We present a convergence analysis, which encompasses other well-known variations of the proximal-point method, previously unrelated. We establish weak global convergence under mild assumptions.
引用
收藏
页码:117 / 136
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 1973, OPERATEURS MAXIMAUX
[2]   VARIATIONAL-PRINCIPLES FOR VARIATIONAL-INEQUALITIES [J].
AUCHMUTY, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (9-10) :863-874
[3]  
AUSLENDER A, 1987, MATH PROGRAM STUD, V30, P102, DOI 10.1007/BFb0121157
[4]  
BREGMAN LM, 1988, SIB MAT ZH, V29, P23
[5]   ON SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS [J].
BRONDSTED, A ;
ROCKAFELLAR, RT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (04) :605-+
[6]  
Burachik RS, 1999, LECT NOTES ECON MATH, V477, P49
[7]  
Burachik RS, 1999, APPL OPTIMIZAT, V22, P25
[8]   Enlargement of monotone operators with applications to variational inequalities [J].
Burachik, RS ;
Iusem, AN ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1997, 5 (02) :159-180
[9]   ε-Enlargements of maximal monotone operators in Banach spaces [J].
Burachik, RS ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1999, 7 (02) :117-132
[10]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318