Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior

被引:20
作者
Goto, Jun-Ichi [1 ,3 ]
Mikoshiba, Katsuhiko [1 ,2 ]
机构
[1] RIKEN, Brain Sci Inst, Dev Neurobiol Lab, Wako, Saitama 3510198, Japan
[2] Japan Sci & Technol Agcy, Int Cooperat Res Project Solut Oriented Res Sci &, Calcium Oscillat Project, Kawaguchi, Saitama 3320012, Japan
[3] Yamagata Univ, Sch Med, Dept Physiol, Yamagata 9909585, Japan
关键词
Cerebellum; Purkinje cell; Calcium; Inositol 1,4,5-trisphosphate; IP3; Inositol 1,4,5-trisphosphate receptor; receptor; LONG-TERM DEPRESSION; GREEN FLUORESCENT PROTEINS; CALMODULIN-BINDING SITE; PARALLEL FIBER SYNAPSES; AMP-DEPENDENT PHOSPHORYLATION; MEDIUM SPINY NEURONS; CLIMBING-FIBER; CA2+ RELEASE; TRISPHOSPHATE RECEPTOR; IP3; RECEPTOR;
D O I
10.1007/s12311-011-0270-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The inositol 1,4,5-trisphosphate (IP3) receptor is highly expressed in cerebellar Purkinje cells and mediates conspicuous calcium release from intracellular calcium stores. Receptor stimulation, such as through mGluR1, activates the G(q)-PLC pathway, which leads to IP3-induced calcium release and subsequent cellular responses, including cerebellar long-term depression in Purkinje cells. Recent studies have demonstrated the regulatory mechanisms of IP3 receptor, revealing activation via IP3 and Ca2+, inactivation via high concentrations of Ca2+, and modulation by various proteins that bind to the IP3 receptor. Novel calcium imaging techniques and caged compounds provide analysis of calcium signals at the single spine level in relation to the induction of long-term depression. Genetically encoded indicators for calcium or IP3 could provide alternate Ca2+ or IP3 imaging, in particular, for in vivo observations. IP3-induced calcium release participates in early development of dendritic branch formation, and loss-of-function mutations or hyper-activation could result various diseases. The IP3 receptor plays a central role in calcium signaling in Purkinje cells, affecting a wide variety of cellular functions, including development, plasticity, maintenance of synaptic functions, and cerebellar motor control.
引用
收藏
页码:820 / 833
页数:14
相关论文
共 197 条
[31]   Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating [J].
Cheung, King-Ho ;
Shineman, Diana ;
Mueller, Marioly ;
Cardenas, Cesar ;
Mei, Lijuan ;
Yang, Jun ;
Tomita, Taisuke ;
Iwatsubo, Takeshi ;
Lee, Virginia M. -Y. ;
Foskett, J. Kevin .
NEURON, 2008, 58 (06) :871-883
[32]  
Choe Chi-Un, 2006, Sci STKE, V2006, pre15
[33]  
CIFUENTES ME, 1994, J BIOL CHEM, V269, P1945
[34]   Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control [J].
Coesmans, M ;
Weber, JT ;
De Zeeuw, CI ;
Hansel, C .
NEURON, 2004, 44 (04) :691-700
[35]   MOTOR DEFICIT AND IMPAIRMENT OF SYNAPTIC PLASTICITY IN MICE LACKING MGLUR1 [J].
CONQUET, F ;
BASHIR, ZI ;
DAVIES, CH ;
DANIEL, H ;
FERRAGUTI, F ;
BORDI, F ;
FRANZBACON, K ;
REGGIANI, A ;
MATARESE, V ;
CONDE, F ;
COLLINGRIDGE, GL ;
CREPEL, F .
NATURE, 1994, 372 (6503) :237-243
[36]   PAIRING OF PRESYNAPTIC AND POSTSYNAPTIC ACTIVITIES IN CEREBELLAR PURKINJE-CELLS INDUCES LONG-TERM CHANGES IN SYNAPTIC EFFICACY INVITRO [J].
CREPEL, F ;
JAILLARD, D .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 432 :123-141
[37]   ACTIVATION OF PROTEIN KINASE-C INDUCES A LONG-TERM DEPRESSION OF GLUTAMATE SENSITIVITY OF CEREBELLAR PURKINJE-CELLS - AN INVITRO STUDY [J].
CREPEL, F ;
KRUPA, M .
BRAIN RESEARCH, 1988, 458 (02) :397-401
[38]   EFFECT OF GLUTAMATE, ASPARTATE AND RELATED DERIVATIVES ON CEREBELLAR PURKINJE-CELL DENDRITES IN THE RAT - AN INVITRO STUDY [J].
CREPEL, F ;
DHANJAL, SS ;
SEARS, TA .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 329 (AUG) :297-317
[39]   Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis [J].
da Fonseca, PCA ;
Morris, SA ;
Nerou, EP ;
Taylor, CW ;
Morris, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3936-3941
[40]   A SINGLE-POOL INOSITOL 1,4,5-TRISPHOSPHATE-RECEPTOR-BASED MODEL FOR AGONIST-STIMULATED OSCILLATIONS IN CA2+ CONCENTRATION [J].
DEYOUNG, GW ;
KEIZER, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (20) :9895-9899