Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior

被引:20
作者
Goto, Jun-Ichi [1 ,3 ]
Mikoshiba, Katsuhiko [1 ,2 ]
机构
[1] RIKEN, Brain Sci Inst, Dev Neurobiol Lab, Wako, Saitama 3510198, Japan
[2] Japan Sci & Technol Agcy, Int Cooperat Res Project Solut Oriented Res Sci &, Calcium Oscillat Project, Kawaguchi, Saitama 3320012, Japan
[3] Yamagata Univ, Sch Med, Dept Physiol, Yamagata 9909585, Japan
关键词
Cerebellum; Purkinje cell; Calcium; Inositol 1,4,5-trisphosphate; IP3; Inositol 1,4,5-trisphosphate receptor; receptor; LONG-TERM DEPRESSION; GREEN FLUORESCENT PROTEINS; CALMODULIN-BINDING SITE; PARALLEL FIBER SYNAPSES; AMP-DEPENDENT PHOSPHORYLATION; MEDIUM SPINY NEURONS; CLIMBING-FIBER; CA2+ RELEASE; TRISPHOSPHATE RECEPTOR; IP3; RECEPTOR;
D O I
10.1007/s12311-011-0270-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The inositol 1,4,5-trisphosphate (IP3) receptor is highly expressed in cerebellar Purkinje cells and mediates conspicuous calcium release from intracellular calcium stores. Receptor stimulation, such as through mGluR1, activates the G(q)-PLC pathway, which leads to IP3-induced calcium release and subsequent cellular responses, including cerebellar long-term depression in Purkinje cells. Recent studies have demonstrated the regulatory mechanisms of IP3 receptor, revealing activation via IP3 and Ca2+, inactivation via high concentrations of Ca2+, and modulation by various proteins that bind to the IP3 receptor. Novel calcium imaging techniques and caged compounds provide analysis of calcium signals at the single spine level in relation to the induction of long-term depression. Genetically encoded indicators for calcium or IP3 could provide alternate Ca2+ or IP3 imaging, in particular, for in vivo observations. IP3-induced calcium release participates in early development of dendritic branch formation, and loss-of-function mutations or hyper-activation could result various diseases. The IP3 receptor plays a central role in calcium signaling in Purkinje cells, affecting a wide variety of cellular functions, including development, plasticity, maintenance of synaptic functions, and cerebellar motor control.
引用
收藏
页码:820 / 833
页数:14
相关论文
共 197 条
[1]   Ca2+-calmodulin inhibits Ca2+ release mediated by type-1,-2 and-3 inositol trisphosphate receptors [J].
Adkins, CE ;
Morris, SA ;
De Smedt, H ;
Sienaert, I ;
Török, K ;
Taylor, CW .
BIOCHEMICAL JOURNAL, 2000, 345 :357-363
[2]   REDUCED HIPPOCAMPAL LONG-TERM POTENTIATION AND CONTEXT-SPECIFIC DEFICIT IN ASSOCIATIVE LEARNING IN MGLUR1 MUTANT MICE [J].
AIBA, A ;
CHEN, C ;
HERRUP, K ;
ROSENMUND, C ;
STEVENS, CF ;
TONEGAWA, S .
CELL, 1994, 79 (02) :365-375
[3]   Control of Neuronal Growth Cone Navigation by Asymmetric Inositol 1,4,5-Trisphosphate Signals [J].
Akiyama, Hiroki ;
Matsu-ura, Toru ;
Mikoshiba, Katsuhiko ;
Kamiguchi, Hiroyuki .
SCIENCE SIGNALING, 2009, 2 (79) :ra34
[4]   RANGE OF MESSENGER ACTION OF CALCIUM-ION AND INOSITOL 1,4,5-TRISPHOSPHATE [J].
ALLBRITTON, NL ;
MEYER, T ;
STRYER, L .
SCIENCE, 1992, 258 (5089) :1812-1815
[5]   IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor [J].
Ando, H ;
Mizutani, A ;
Matsu-ura, T ;
Mikoshiba, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (12) :10602-10612
[6]   IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor [J].
Ando, Hideaki ;
Mizutani, Akihiro ;
Kiefer, Hélène ;
Tsuzurugi, Dai ;
Michikawa, Takayuki ;
Mikoshiba, Katsuhiko .
MOLECULAR CELL, 2006, 22 (06) :795-806
[7]   Circular permutation and receptor insertion within green fluorescent proteins [J].
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11241-11246
[8]  
Barski JJ, 2000, GENESIS, V28, P93, DOI 10.1002/1526-968X(200011/12)28:3/4<93::AID-GENE10>3.3.CO
[9]  
2-N
[10]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21