Sensitivity analysis of kinetic parameters for heavy oil hydrocracking

被引:35
作者
Felix, Guillermo [1 ,2 ]
Ancheyta, Jorge [2 ]
Trejo, Fernando [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Legaria, Legaria 694, Mexico City 11500, DF, Mexico
[2] Inst Mexicano Petr, Eje Cent Lazaro Cardenas 152, Mexico City 07730, DF, Mexico
关键词
Sensitivity analysis; Kinetic parameters; Regression analysis; Heavy oil hydrocracking; MODEL;
D O I
10.1016/j.fuel.2018.12.058
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sensitivity analysis is an important tool commonly used for confirming the achievement of the optimum set of parameter values obtained by regression analysis. To highlight this importance, two cases reported in the literature for the kinetic modeling of hydrocracking of heavy oils were selected, and sensitivity analysis was performed for the reported parameters. It was found that the values of the reported kinetic parameters do not reach the minimization of the objective function based on the sum of squares errors between predicted and experimental product yields, so that the reported set of kinetic parameters is not the optimal one. The calculated optimized reaction rate coefficients fitted better to experimental data than those reported in the literature. It was demonstrated that sensitivity analysis is of great relevance for determining the best set of parameters, and thus establishing proper reaction pathways, values of reaction rate coefficients, and activation energies, whereby reactor modeling, simulation, design and optimization can be done in an effective manner.
引用
收藏
页码:836 / 844
页数:9
相关论文
共 50 条
  • [1] Monte Carlo and Sensitivity Analysis Methods for Kinetic Parameters Optimization: Application to Heavy Oil Slurry-Phase Hydrocracking
    Felix, Guillermo
    Rios, Juan J.
    Tirado, Alexis
    Varfolomeev, Mikhail A.
    Yuan, Chengdong
    Ancheyta, Jorge
    ENERGY & FUELS, 2022, 36 (16) : 9251 - 9260
  • [2] Sensitivity Analysis of a Fully Kinetic Code for Physical Parameters
    Karadag, Burak
    Cho, Shinatora
    Funaki, Ikkoh
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, 60 (02) : 67 - 76
  • [3] Comparison of Traditional and Sequential Approaches for Estimation of Kinetic Parameters of Heavy Oil Upgrading
    Felix, Guillermo
    Tirado, Alexis
    Varfolomeev, Mikhail A.
    Soto-Robles, Carlos A.
    Lugo-Medina, Eder
    Ancheyta, Jorge
    ENERGY & FUELS, 2024, 38 (09) : 8044 - 8061
  • [4] Analysis of kinetic models for hydrocracking of heavy oils for In-situ and Ex-situ applications
    Felix, Guillermo
    Tirado, Alexis
    Yuan, Chengdong
    Varfolomeev, Mikhail A.
    Ancheyta, Jorge
    FUEL, 2022, 323
  • [5] Modelling and simulation of a transketolase mediated reaction: Sensitivity analysis of kinetic parameters
    Sayar, N. A.
    Chen, B. H.
    Lye, G. J.
    Woodley, J. M.
    BIOCHEMICAL ENGINEERING JOURNAL, 2009, 47 (1-3) : 1 - 9
  • [6] Role of Hydrogen Pressure in Slurry-Phase Hydrocracking of Venezuela Heavy Oil
    Du, Hui
    Liu, Dong
    Liu, Hua
    Gao, Peng
    Lv, Renqing
    Li, Ming
    Lou, Bin
    Yang, Yuanxi
    ENERGY & FUELS, 2015, 29 (04) : 2104 - 2110
  • [7] Hydrocracking and hydrotreating reaction kinetics of heavy oil in CSTR using a dispersed catalyst
    Pham, Hung Hai
    Kim, Kwang Ho
    Go, Kang Seok
    Nho, Nam Sun
    Kim, Woohyun
    Kwon, Eun Hee
    Jung, Ryu Ho
    Lim, Young-il
    Lim, Suk Hyun
    Pham, Dung Anh
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 197
  • [8] A protein inspired RNA genetic algorithm for parameter estimation in hydrocracking of heavy oil
    Wang, Kangtai
    Wang, Ning
    CHEMICAL ENGINEERING JOURNAL, 2011, 167 (01) : 228 - 239
  • [9] Pyrolysis Kinetic Parameters of Omari Oil Shale Using Thermogravimetric Analysis
    Abu El-Rub, Ziad
    Kujawa, Joanna
    Al-Gharabli, Samer
    ENERGIES, 2020, 13 (16)
  • [10] Kinetic analysis of vacuum residue hydrocracking in early reaction stages
    Puron, H.
    Arcelus-Arrillaga, P.
    Chin, K. K.
    Pinilla, J. L.
    Fidalgo, B.
    Millan, M.
    FUEL, 2014, 117 : 408 - 414