Microstructural features and mechanical properties of a novel Ti- and Zr-modified Al-Mn alloy processed by laser powder bed fusion

被引:18
作者
Mair, Philipp [1 ]
Letofsky-Papst, Ilse [2 ,3 ]
Leichtfried, Gerhard [1 ]
机构
[1] Univ Innsbruck, Dept Mechatron, Fac Engn Sci, Mat Sci, Tech Str 13, A-6020 Innsbruck, Austria
[2] Graz Univ Technol, Inst Electron Microscopy & Nanoanal, NAWI Graz, Steyrergasse 17, A-8010 Graz, Austria
[3] Graz Univ Technol, Ctr Electron Microscopy, NAWI Graz, Steyrergasse 17, A-8010 Graz, Austria
关键词
Laser powder bed fusion; Al-Mn alloy; Selective laser melting; Alloy design; Aluminum; Grain refinement; STRENGTHENING MECHANISMS; TENSILE PROPERTIES; GRAIN-REFINEMENT; STAINLESS-STEEL; ALUMINUM-ALLOY; ALSI10MG ALLOY; FE-CR; SC; COMPONENTS; BEHAVIOR;
D O I
10.1016/j.jallcom.2021.163156
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The expansion of the material library for the laser powder bed fusion (LPBF) process is essential for the further establishment of the process in areas such as the aerospace and automotive industries. In this study, we designed a high-strength and low-cost Al-Mn-Ti-Zr alloy specifically tailored to the unique conditions of the LPBF process. Gas-atomized pre-alloyed powder was prepared and used as feedstock to fabricate LPBF specimens for microstructural examination and mechanical testing. By taking advantage of the high solidification rate, unconventionally large amounts of Mn (3.7 +/- 0.5 wt%) are metastably frozen within the alpha-Al matrix, contributing significantly to solid solution hardening (similar to 104 MPa estimates 37% share of yield strength). The as-built specimens exhibit a yield strength of 284 +/- 3 MPa, an ultimate tensile strength of 320 +/- 1 MPa, and an elongation at fracture of 16.9 +/- 0.2%. This new alloy exhibits a bimodal microstructure consisting of alternately distributed fine equiaxed and coarse columnar grain regions. Further microstructural analyses reveal a high number of primary L1(2) cubic Al-3(TixZr1-x) nanoparticles within the equiaxed alpha-Al grains near the bottom of the melt pool. A highly coherent interface with the alpha-Al matrix confirms high efficiency for heterogeneous nucleation during solidification. In addition to the Al-3(TixZr1-x) nanoparticles, an AlxMn(Fe, Si) phase with a quasi-crystalline structure is observed along the grain boundaries and interdendritic areas. (c) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 60 条
[1]  
3T Additive Manufacturing, 2021, MAT DAT SHEET AL A20
[2]   Current research progress in grain refinement of cast magnesium alloys: A review article [J].
Ali, Yahia ;
Qiu, Dong ;
Jiang, Bin ;
Pan, Fusheng ;
Zhang, Ming-Xing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 619 :639-651
[3]   Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J].
Amato, K. N. ;
Gaytan, S. M. ;
Murr, L. E. ;
Martinez, E. ;
Shindo, P. W. ;
Hernandez, J. ;
Collins, S. ;
Medina, F. .
ACTA MATERIALIA, 2012, 60 (05) :2229-2239
[4]  
[Anonymous], 2021, APWORKS SCALMALLOY M
[5]   PRECIPITATION HARDENING [J].
ARDELL, AJ .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (12) :2131-2165
[6]   The Al-rich region of the Al-Fe-Mn alloy system [J].
Balanetskyy, S. ;
Pavlyuchkov, D. ;
Velikanova, T. ;
Grushko, B. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 619 :211-220
[7]   Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting [J].
Bayoumy, D. ;
Schliephake, D. ;
Dietrich, S. ;
Wu, X. H. ;
Zhu, Y. M. ;
Huang, A. J. .
MATERIALS & DESIGN, 2021, 198
[8]   Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms [J].
Braun, J. ;
Kaserer, L. ;
Stajkovic, J. ;
Leitz, K-H ;
Tabernig, B. ;
Singer, P. ;
Leibenguth, P. ;
Gspan, C. ;
Kestler, H. ;
Leichtfried, G. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2019, 84
[9]   Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J].
Croteau, Joseph R. ;
Griffiths, Seth ;
Rossell, Marta D. ;
Leinenbach, Christian ;
Kenel, Christoph ;
Jansen, Vincent ;
Seidman, David N. ;
Dunand, David C. ;
Vo, Nhon Q. .
ACTA MATERIALIA, 2018, 153 :35-44
[10]  
Davis JR, 1993, Aluminum and aluminum alloys