Eigenvalues of the drifted Laplacian on complete metric measure spaces

被引:37
作者
Cheng, Xu [1 ]
Zhou, Detang [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, BR-24020 Niteroi, RJ, Brazil
关键词
Riemannian manifold; drifted Laplacian; spectrum; self-shrinker; LOGARITHMIC SOBOLEV INEQUALITIES; SHRINKING RICCI SOLITONS; MEAN-CURVATURE FLOW; SINGULARITIES; COMPACTNESS; DIAMETER;
D O I
10.1142/S0219199716500012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first we study a complete smooth metric measure space (M-n, g, e(-f) dv) with the (infinity)-Bakry-Emery Ricci curvature Ric(f) >= a/2 g for some positive constant a. It is known that the spectrum of the drifted Laplacian Delta(f) for M is discrete and the first nonzero eigenvalue of Delta(f) has lower bound a/2. We prove that if the lower bound a/2 is achieved with multiplicity k >= 1, then k <= n, M is isometric to Sigma(n-k) x R-k for some complete (n - k)-dimensional manifold S and by passing an isometry, (M-n, g, e(-f) dv) must split off a gradient shrinking Ricci soliton (R-k, g(can), a/4 |t|(2)), t is an element of R-k. This result can be applied to gradient shrinking Ricci solitons. Secondly, we study the drifted Laplacian L = Delta-1/2 < x, del.> for properly immersed self-shrinkers in the Euclidean space Rn+ p, p >= 1 and show the discreteness of the spectrum of L and a logarithmic Sobolev inequality.
引用
收藏
页数:17
相关论文
共 29 条
[1]  
Andrews B., 2012, ARXIV12045010MATHDG
[2]   Eigenvalue Comparison on Bakry-Emery Manifolds [J].
Andrews, Ben ;
Ni, Lei .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (11) :2081-2092
[3]  
[Anonymous], 1958, TRAVAUX RECHERCHES M
[4]  
[Anonymous], 2009, AMSIP STUDIES ADV MA
[5]   Self-shrinkers for the mean curvature flow in arbitrary codimension [J].
Arezzo, Claudio ;
Sun, Jun .
MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) :993-1027
[6]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[7]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[8]   On the spectrum of the Laplacian [J].
Charalambous, Nelia ;
Lu, Zhiqin .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :211-238
[9]   EIGENVALUE ESTIMATE AND COMPACTNESS FOR CLOSED f-MINIMAL SURFACES [J].
Cheng, Xu ;
Mejia, Tito ;
Zhou, Detang .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (02) :347-367
[10]   VOLUME ESTIMATE ABOUT SHRINKERS [J].
Cheng, Xu ;
Zhou, Detang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) :687-696