Invariant Algebraic Curves of Generalized Lienard Polynomial Differential Systems

被引:5
作者
Gine, Jaume [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Lleida, Dept Matemat, Avda Jaume II 69, Lleida 25001, Catalonia, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Catalonia, Spain
基金
欧盟地平线“2020”;
关键词
Lienard differential systems; invariant algebraic curve; first integrals; LIOUVILLIAN 1ST INTEGRALS;
D O I
10.3390/math10020209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we focus on invariant algebraic curves of generalized Lienard polynomial differential systems x & PRIME;=y, y & PRIME;=-f(m)(x)y-g(n)(x), where the degrees of the polynomials f and g are m and n, respectively, and we correct some results previously stated.
引用
收藏
页数:5
相关论文
共 19 条
[11]   On the hyperelliptic limit cycles of Lienard systems [J].
Liu, Changjian ;
Chen, Guoting ;
Yang, Jiazhong .
NONLINEARITY, 2012, 25 (06) :1601-1611
[12]   Liouvillian first integrals for a class of generalized Lienard polynomial differential systems [J].
Llibre, Jaume ;
Valls, Claudia .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (06) :1195-1210
[13]   The generalized Lienard polynomial differential systems x′ = y, y′ = -g(x) - f (x)y with deg g = deg f+1 are not Liouvillian integrable [J].
Llibre, Jaume ;
Valls, Claudia .
BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (02) :214-227
[14]  
Llibre J, 2013, ADV NONLINEAR STUD, V13, P825
[15]   Invariant Algebraic Curves and Hyperelliptic Limit Cycles of Lienard Systems [J].
Qian, Xinjie ;
Shen, Yang ;
Yang, Jiazhong .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
[16]   On the Number of Hyperelliptic Limit Cycles of Lienard Systems [J].
Qian, Xinjie ;
Yang, Jiazhong .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
[17]   LIOUVILLIAN 1ST INTEGRALS OF DIFFERENTIAL-EQUATIONS [J].
SINGER, MF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (02) :673-688
[18]  
Zhang X, 2017, DEV MATH, V47, P1, DOI 10.1007/978-981-10-4226-3