Current Symmetries for Particle Systems with Several Conservation Laws

被引:19
作者
Grisi, Rafael M. [2 ]
Schuetz, Gunter M. [1 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Complex Syst, D-52425 Julich, Germany
[2] Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210910 Santo Andre, SP, Brazil
[3] Univ Bonn, Interdisziplinares Zentrum Komplexe Syst, D-53119 Bonn, Germany
基金
巴西圣保罗研究基金会;
关键词
Interacting particle systems; Hydrodynamic limit; Time reversal; Hyperbolic system of conservation laws; DRIVEN DIFFUSIVE SYSTEMS; DYNAMICS; STATES;
D O I
10.1007/s10955-011-0341-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider stochastic interacting particle systems with more than one conservation law in a regime far from equilibrium. Using time reversal we derive symmetry relations for the stationary currents of the conserved quantities that are reminiscent of Onsager's reciprocity relations. These relations are valid for a very large class of particles with only some mild assumption on the decay of stationary relations and imply that the coarse-grained macroscopic dynamics is governed by a system of hyperbolic conservation laws. An explicit expression for the conserved Lax entropy is obtained.
引用
收藏
页码:1499 / 1512
页数:14
相关论文
共 19 条
  • [1] [Anonymous], 1999, STOCHASTIC INTERACTI
  • [2] Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring
    Arndt, PF
    Heinzel, T
    Rittenberg, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : L45 - L51
  • [3] Nonequilibrium steady states of matrix-product form: a solver's guide
    Blythe, R. A.
    Evans, M. R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) : R333 - R441
  • [4] Phase transition in the ABC model
    Clincy, M
    Derrida, B
    Evans, MR
    [J]. PHYSICAL REVIEW E, 2003, 67 (06): : 8
  • [5] The fluctuation theorem
    Evans, DJ
    Searles, DJ
    [J]. ADVANCES IN PHYSICS, 2002, 51 (07) : 1529 - 1585
  • [6] Phase separation and coarsening in one-dimensional driven diffusive systems: Local dynamics leading to long-range Hamiltonians
    Evans, MR
    Kafri, Y
    Koduvely, HM
    Mukamel, D
    [J]. PHYSICAL REVIEW E, 1998, 58 (03) : 2764 - 2778
  • [7] DYNAMICAL ENSEMBLES IN STATIONARY STATES
    GALLAVOTTI, G
    COHEN, EGD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (5-6) : 931 - 970
  • [8] Fluctuation theorems for stochastic dynamics
    Harris, R. J.
    Schuetz, G. M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [9] A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics
    Lebowitz, JL
    Spohn, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) : 333 - 365
  • [10] Shocks and excitation dynamics in a driven diffusive two-channel system
    Popkov, V
    Schütz, GM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (3-4) : 523 - 540