Catalytically Influential Features in Transition Metal Oxides

被引:83
作者
Sun, Yuanmiao [1 ]
Chen, Gao [1 ,2 ]
Xi, Shibo [3 ]
Xu, Zhichuan J. [1 ,4 ,5 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Cambridge Ctr Adv Res & Educ Singapore, Singapore 138602, Singapore
[3] Inst Chem & Engn Sci A Star, Singapore 627833, Singapore
[4] Energy Res Inst NTU, ERI N Interdisciplinary Grad Sch, Singapore 639798, Singapore
[5] Cambridge Ctr Adv Res & Educ Singapore, Singapore 138602, Singapore
基金
新加坡国家研究基金会;
关键词
EVOLUTION REACTION; MAGNETIC-FIELD; OXYGEN; OXIDATION;
D O I
10.1021/acscatal.1c04393
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of efficient catalysts is critical in advancing electrocatalysis techniques. While tremendous progress has been made on the perspective of optimizing the catalyst-reactant interaction, the influence from other properties has received relatively less attention to date. These properties are normally originated from the intrinsic solid-state properties and can be circumstantially influential on the reaction activity and reaction mechanism. In particular, transition metal oxides (TMOs) possess complex inherent features that enable a wide variety of catalytically influential properties. Therefore, understanding the inherent features in TMOs and mastering the strategies to take full advantage of them will bring opportunities for further advances. Here we provide an overview of the inherent features in TMOs and conceptually discuss how they can alter the catalytic behaviors in electrocatalysis. Perspectives to take full advantage of these features are also proposed for a better design of TMO-based electrocatalysts.
引用
收藏
页码:13947 / 13954
页数:8
相关论文
共 40 条
[1]   Decreasing the Energy Consumption of the CO2 Electrolysis Process Using a Magnetic Field [J].
Bhargava, Saket S. ;
Azmoodeh, Daniel ;
Chen, Xinyi ;
Cofell, Emiliana R. ;
Esposito, Anne Marie ;
Verma, Sumit ;
Gewirth, Andrew A. ;
Kenis, Paul J. A. .
ACS ENERGY LETTERS, 2021, 6 (07) :2427-2433
[2]   Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides? [J].
Calle-Vallejo, Federico ;
Diaz-Morales, Oscar A. ;
Kolb, Manuel J. ;
Koper, Marc T. M. .
ACS CATALYSIS, 2015, 5 (02) :869-873
[3]   Beyond the Traditional Volcano Concept: Overpotential-Dependent Volcano Plots Exemplified by the Chlorine Evolution Reaction over Transition-Metal Oxides [J].
Exner, Kai S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (27) :16921-16928
[4]   Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media [J].
Garces-Pineda, Felipe A. ;
Blasco-Ahicart, Marta ;
Nieto-Castro, David ;
Lopez, Ntiria ;
Ramon Galan-Mascaros, Jose .
NATURE ENERGY, 2019, 4 (06) :519-525
[5]   Ferromagnetic-Antiferromagnetic Coupling Core-Shell Nanoparticles with Spin Conservation for Water Oxidation [J].
Ge, Jingjie ;
Chen, Riccardo Ruixi ;
Ren, Xiao ;
Liu, Jiawei ;
Ong, Samuel Jun Hoong ;
Xu, Zhichuan J. .
ADVANCED MATERIALS, 2021, 33 (42)
[6]   THEORY OF THE ROLE OF COVALENCE IN THE PEROVSKITE-TYPE MANGANITES [LA,M(II)]MNO3 [J].
GOODENOUGH, JB .
PHYSICAL REVIEW, 1955, 100 (02) :564-573
[7]   Spin dependent interactions catalyse the oxygen electrochemistry [J].
Gracia, J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) :20451-20456
[8]   Itinerant Spins and Bond Lengths in Oxide Electrocatalysts for Oxygen Evolution and Reduction Reactions [J].
Gracia, Jose .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (15) :9967-9972
[9]   Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides [J].
Hong, Wesley T. ;
Stoerzinger, Kelsey A. ;
Lee, Yueh-Lin ;
Giordano, Livia ;
Grimaud, Alexis ;
Johnson, Alyssa M. ;
Hwang, Jonathan ;
Crumlin, Ethan J. ;
Yang, Wanli ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2190-2200
[10]   Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation [J].
Hoskuldsson, Arni B. ;
Abghoui, Younes ;
Gunnarsdottir, Anna B. ;
Skulason, Egill .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11) :10327-10333