On the rigidity of constant mean curvature complete vertical graphs in warped products

被引:30
作者
Aquino, C. F. [2 ]
de Lima, H. F. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
关键词
Warped products; Hyperbolic space; Euclidean space; Complete vertical graphs; Constant mean curvature; Bernstein-type theorems; RIEMANNIAN-MANIFOLDS; SPACELIKE HYPERSURFACES; UNIQUENESS;
D O I
10.1016/j.difgeo.2011.04.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate constant mean curvature complete vertical graphs in a warped product, which is supposed to satisfy an appropriated convergence condition. In this setting, under suitable restrictions on the values of the mean curvature and the norm of the gradient of the height function, we obtain rigidity theorems concerning to such graphs. Furthermore, applications to the hyperbolic and Euclidean spaces are given. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:590 / 596
页数:7
相关论文
共 13 条
[1]   ON SPACELIKE HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN THE DE SITTER SPACE [J].
AKUTAGAWA, K .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) :13-19
[2]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[3]   A Bernstein-type theorem for Riemannian manifolds with a Killing field [J].
Alias, Luis J. ;
Dajczer, Marcos ;
Ripoll, Jaime .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (04) :363-373
[4]  
Alías LJ, 2006, COMMENT MATH HELV, V81, P653
[5]  
AQUINO CP, J MATH ANAL IN PRESS
[6]   BERNSTEIN-TYPE THEOREMS IN SEMI-RIEMANNIAN WARPED PRODUCTS [J].
Camargo, F. ;
Caminha, A. ;
de Lima, H. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) :1841-1850
[7]   Complete Vertical Graphs with Constant Mean Curvature in Semi-Riemannian Warped Products [J].
Caminha, A. ;
de Lima, H. F. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (01) :91-105
[8]  
CAMINHA A, B BRAZILIAN IN PRESS
[9]  
Montiel S, 1999, INDIANA U MATH J, V48, P711
[10]   ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [J].
OMORI, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (02) :205-+