Multi-objective optimization of geometric dimensions and material composition of functionally graded components

被引:0
作者
Vel, Senthil S. [1 ]
Goupee, Andrew J. [1 ]
机构
[1] Univ Maine, Dept Mech Engn, Orono, ME 04469 USA
来源
MULTISCALE AND FUNCTIONALLY GRADED MATERIALS | 2008年 / 973卷
关键词
FGM; transient thermoelasticity; multi-objective optimization; genetic algorithm;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the two-dimensional volume fraction optimization of a metal/metal functionally graded material active cooling component. The plane stress transient thermoelastic behavior of the component is analyzed using the element-free Galerkin method. A multi-objective genetic algorithm optimization procedure is used to determine the optimal volume fraction distribution and shape parameters that will minimize multiple objectives subject to nonlinear constraints.
引用
收藏
页码:610 / 615
页数:6
相关论文
共 13 条
[1]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[2]   VISUALIZATION OF SURFACE DATA TO PRESERVE POSITIVITY AND OTHER SIMPLE CONSTRAINTS [J].
BRODLIE, K ;
MASHWAMA, P ;
BUTT, S .
COMPUTERS & GRAPHICS, 1995, 19 (04) :585-594
[3]   Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM [J].
Cho, JR ;
Ha, DYI .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (29-30) :3195-3211
[4]  
Deb K., 2000, Parallel Problem Solving from Nature PPSN VI. 6th International Conference. Proceedings (Lecture Notes in Computer Science Vol.1917), P849
[5]  
Fung Y.C., 2017, CLASSICAL COMPUTATIO
[6]  
Goldberg D.E, 1989, GENETIC ALGORITHMS S
[7]   Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm [J].
Goupee, Andrew J. ;
Vel, Senthil S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) :5926-5948
[8]  
Hughes TJR., 2000, The Finite Element Method
[9]  
LANCASTER P, 1981, MATH COMPUT, V37, P141, DOI 10.1090/S0025-5718-1981-0616367-1
[10]  
Liu G.R., 2003, MESH FREE METHODS MO