Multiple zeta values in deformation quantization

被引:11
作者
Banks, Peter [1 ]
Panzer, Erik [1 ]
Pym, Brent [2 ,3 ]
机构
[1] Univ Oxford, Oxford, England
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[3] McGill Univ, Montreal, PQ, Canada
基金
英国工程与自然科学研究理事会;
关键词
11M32; 14H10; 53D55; 81Q30; MODULI SPACES; STAR PRODUCT; MOTIVES; INTEGRALS; OPERADS; CURVES;
D O I
10.1007/s00222-020-00970-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kontsevich's 1997 formula for the deformation quantization of Poisson brackets is a Feynman expansion involving volume integrals over moduli spaces of marked disks. We develop a systematic theory of integration on these moduli spaces via suitable algebras of polylogarithms, and use it to prove that Kontsevich's integrals can be expressed as integer-linear combinations of multiple zeta values. Our proof gives a concrete algorithm for calculating the integrals, which we have used to produce the first software package for the symbolic calculation of Kontsevich's formula.
引用
收藏
页码:79 / 159
页数:81
相关论文
共 65 条
[51]   Numbers and functions in quantum field theory [J].
Schnetz, Oliver .
PHYSICAL REVIEW D, 2018, 97 (08)
[52]   Graphical functions and single-valued multiple polylogarithms [J].
Schnetz, Oliver .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2014, 8 (04) :589-675
[53]   A proof of the Tsygan formality conjecture for chains [J].
Shoikhet, B .
ADVANCES IN MATHEMATICS, 2003, 179 (01) :7-37
[54]   Vanishing of the Kontsevich integrals of the wheels [J].
Shoikhet, B .
LETTERS IN MATHEMATICAL PHYSICS, 2001, 56 (02) :141-149
[55]   Closed string amplitudes as single-valued open string amplitudes [J].
Stieberger, Stephan ;
Taylor, Tomasz R. .
NUCLEAR PHYSICS B, 2014, 881 :269-287
[56]  
Tamarkin D. E., 1999, THESIS
[57]   Mixed Tate motives and multiple zeta values [J].
Terasoma, T .
INVENTIONES MATHEMATICAE, 2002, 149 (02) :339-369
[58]   The Kontsevich Weight of a Wheel with Spokes Pointing Outward [J].
Van den Bergh, Michel .
ALGEBRAS AND REPRESENTATION THEORY, 2009, 12 (2-5) :443-479
[59]  
Vanhove P., 2018, ARXIV181203018HEPTH
[60]  
Waldschmidt M., 2011, LECT MULTIPLE ZETA V