Multiple zeta values in deformation quantization

被引:11
作者
Banks, Peter [1 ]
Panzer, Erik [1 ]
Pym, Brent [2 ,3 ]
机构
[1] Univ Oxford, Oxford, England
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[3] McGill Univ, Montreal, PQ, Canada
基金
英国工程与自然科学研究理事会;
关键词
11M32; 14H10; 53D55; 81Q30; MODULI SPACES; STAR PRODUCT; MOTIVES; INTEGRALS; OPERADS; CURVES;
D O I
10.1007/s00222-020-00970-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kontsevich's 1997 formula for the deformation quantization of Poisson brackets is a Feynman expansion involving volume integrals over moduli spaces of marked disks. We develop a systematic theory of integration on these moduli spaces via suitable algebras of polylogarithms, and use it to prove that Kontsevich's integrals can be expressed as integer-linear combinations of multiple zeta values. Our proof gives a concrete algorithm for calculating the integrals, which we have used to produce the first software package for the symbolic calculation of Kontsevich's formula.
引用
收藏
页码:79 / 159
页数:81
相关论文
共 65 条
[1]   Logarithms and deformation quantization [J].
Alekseev, Anton ;
Rossi, Carlo A. ;
Torossian, Charles ;
Willwacher, Thomas .
INVENTIONES MATHEMATICAE, 2016, 206 (01) :1-28
[2]   Kontsevich Deformation Quantization and Flat Connections [J].
Alekseev, Anton ;
Torossian, Charles .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (01) :47-64
[3]  
[Anonymous], 1979, ASTERISQUE
[4]  
[Anonymous], 1964, S TOPOLOGIA
[5]   Kontsevich star product on the dual of a nilpotent Lie algebra [J].
Arnal, D .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (09) :823-826
[6]  
Arnol'd, 1969, MAT ZAMETKI, V5, P227, DOI [10.1007/BF01098313, DOI 10.1007/BF01098313]
[7]  
Ball K, 2001, INVENT MATH, V146, P193, DOI 10.1007/s002220100168
[8]   A comparison between Rieffel's and Kontsevich's deformation quantizations for linear poisson tensors [J].
Ben Amar, Nabiha .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) :1-24
[9]   The Multiple Zeta Value data mine [J].
Bluemlein, J. ;
Broadhurst, D. J. ;
Vermaseren, J. A. M. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) :582-625
[10]   Feynman integrals and iterated integrals on moduli spaces of curves of genus zero [J].
Bogner, Christian ;
Brown, Francis .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2015, 9 (01) :189-238