Multiple zeta values in deformation quantization

被引:11
作者
Banks, Peter [1 ]
Panzer, Erik [1 ]
Pym, Brent [2 ,3 ]
机构
[1] Univ Oxford, Oxford, England
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[3] McGill Univ, Montreal, PQ, Canada
基金
英国工程与自然科学研究理事会;
关键词
11M32; 14H10; 53D55; 81Q30; MODULI SPACES; STAR PRODUCT; MOTIVES; INTEGRALS; OPERADS; CURVES;
D O I
10.1007/s00222-020-00970-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kontsevich's 1997 formula for the deformation quantization of Poisson brackets is a Feynman expansion involving volume integrals over moduli spaces of marked disks. We develop a systematic theory of integration on these moduli spaces via suitable algebras of polylogarithms, and use it to prove that Kontsevich's integrals can be expressed as integer-linear combinations of multiple zeta values. Our proof gives a concrete algorithm for calculating the integrals, which we have used to produce the first software package for the symbolic calculation of Kontsevich's formula.
引用
收藏
页码:79 / 159
页数:81
相关论文
共 65 条
  • [1] Logarithms and deformation quantization
    Alekseev, Anton
    Rossi, Carlo A.
    Torossian, Charles
    Willwacher, Thomas
    [J]. INVENTIONES MATHEMATICAE, 2016, 206 (01) : 1 - 28
  • [2] Kontsevich Deformation Quantization and Flat Connections
    Alekseev, Anton
    Torossian, Charles
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (01) : 47 - 64
  • [3] Apery R, 1979, ASTERISQUE, V61, P11
  • [4] Kontsevich star product on the dual of a nilpotent Lie algebra
    Arnal, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (09): : 823 - 826
  • [5] Arnold V I, 1969, Math. Notes, V5, P138
  • [6] Ball K, 2001, INVENT MATH, V146, P193, DOI 10.1007/s002220100168
  • [7] A comparison between Rieffel's and Kontsevich's deformation quantizations for linear poisson tensors
    Ben Amar, Nabiha
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) : 1 - 24
  • [8] The Multiple Zeta Value data mine
    Bluemlein, J.
    Broadhurst, D. J.
    Vermaseren, J. A. M.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) : 582 - 625
  • [9] Feynman integrals and iterated integrals on moduli spaces of curves of genus zero
    Bogner, Christian
    Brown, Francis
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2015, 9 (01) : 189 - 238
  • [10] Special values of multiple polylogarithms
    Borwein, JM
    Bradley, DM
    Broadhurst, DJ
    Lisonek, P
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (03) : 907 - 941