Luciferin-Bioinspired Click Ligation Enables Hydrogel Platforms with Fine-Tunable Properties for 3D Cell Culture

被引:10
作者
Jin, Minye [1 ,2 ]
Kocer, Gulistan [1 ]
Paez, Julieta, I [1 ]
机构
[1] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[2] Saarland Univ, Chem Dept, D-66123 Saarbrucken, Germany
关键词
bioinspired materials; 3D cell encapsulation; cyanobenzothiazole-cysteine click ligation; hydrogels; tunable gelation rate; bioactivity; luciferin adduct; BIOCOMPATIBLE CONDENSATION REACTION; METHYLSULFONE-BASED HYDROGELS; MESENCHYMAL STEM-CELLS; CROSS-LINKED HYDROGELS; MECHANICAL-PROPERTIES; RESPONSIVE HYDROGELS; KINETICS; ENCAPSULATION; REACTIVITY; OXYLUCIFERIN;
D O I
10.1021/acsami.1c22186
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
There is an increasing interest in coupling reactions for cross-linking of cell-encapsulating hydrogels under biocompatible, chemoselective, and tunable conditions. Inspired by the biosynthesis of luciferins in fireflies, here we exploit the cyanobenzothiazole-cysteine (CBT-Cys) click ligation to develop polyethylene glycol hydrogels as tunable scaffolds for cell encapsulation. Taking advantage of the chemoselectivity and versatility of CBT-Cys ligation, a highly flexible gel platform is reported here. We demonstrate luciferin-inspired hydrogels with important advantages for cell encapsulation applications: (i) gel precursors derived from inexpensive reagents and with good stability in aqueous solution (>4 weeks), (ii) adjustable gel mechanics within physiological ranges (E = 180-6240 Pa), (iii) easy tunability of the gelation rate (seconds to minutes) by external means, (iv) high microscale homogeneity, (v) good cytocompatibility, and (iv) regulable biological properties. These flexible and robust CBT-Cys hydrogels are proved as supportive matrices for 3D culture of different cell types, namely, fibroblasts and human mesenchymal stem cells. Our findings expand the toolkit of click chemistries for the fabrication of tunable biomaterials.
引用
收藏
页码:5017 / 5032
页数:16
相关论文
共 70 条
[41]   Synthesis and Characterization of a Self-Fluorescent Hyaluronic Acid-Based Gel for Dermal Applications [J].
Menegatti, Stefano ;
Ruocco, Nino ;
Kumar, Sunny ;
Zakrewsky, Michael ;
De Oliveira, Joshua Sanchez ;
Helgeson, Matthew. E. ;
Leal, Gary L. ;
Mitragotri, Samir .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (15) :2297-2305
[42]  
Mhanna R, 2014, TISSUE ENG PT A, V20, P1165, DOI [10.1089/ten.tea.2013.0519, 10.1089/ten.TEA.2013.0519]
[43]   Lessons Learned from Luminous Luciferins and Latent Luciferases [J].
Miller, Stephen C. ;
Mofford, David M. ;
Adams, Spencer T., Jr. .
ACS CHEMICAL BIOLOGY, 2018, 13 (07) :1734-1740
[44]   The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry [J].
Nair, Devatha P. ;
Podgorski, Maciej ;
Chatani, Shunsuke ;
Gong, Tao ;
Xi, Weixian ;
Fenoli, Christopher R. ;
Bowman, Christopher N. .
CHEMISTRY OF MATERIALS, 2014, 26 (01) :724-744
[45]  
OKADA K, 1974, TETRAHEDRON LETT, P2771
[46]   Thiol-Methylsulfone-Based Hydrogels for Cell Encapsulation: Reactivity Optimization of Aryl-Methylsulfone Substrate for Fine-Tunable Gelation Rate and Improved Stability [J].
Paez, Julieta, I ;
de Miguel-Jimenez, Adrian ;
Valbuena-Mendoza, Rocio ;
Rathore, Aditi ;
Jin, Minye ;
Glaser, Alisa ;
Pearson, Samuel ;
del Campo, Aranzazu .
BIOMACROMOLECULES, 2021, 22 (07) :2874-2886
[47]   Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation [J].
Paez, Julieta I. ;
Farrukh, Aleeza ;
Valbuena-Mendoza, Rocio ;
Wlodarczyk-Biegun, Malgorzata K. ;
del Campo, Aranzazu .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) :8062-8072
[48]   Designing Injectable, Covalently Cross- Linked Hydrogels for Biomedical Applications [J].
Patenaude, Mathew ;
Smeets, Niels M. B. ;
Hoare, Todd .
MACROMOLECULAR RAPID COMMUNICATIONS, 2014, 35 (06) :598-617
[49]   Tuning Gelation Time and Morphology of Injectable Hydrogels Using Ketone-Hydrazide Cross-Linking [J].
Patenaude, Mathew ;
Campbell, Scott ;
Kinio, Dennis ;
Hoare, Todd .
BIOMACROMOLECULES, 2014, 15 (03) :781-790
[50]   Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2 [J].
Patterson, J. ;
Hubbell, J. A. .
BIOMATERIALS, 2010, 31 (30) :7836-7845