Luciferin-Bioinspired Click Ligation Enables Hydrogel Platforms with Fine-Tunable Properties for 3D Cell Culture

被引:10
作者
Jin, Minye [1 ,2 ]
Kocer, Gulistan [1 ]
Paez, Julieta, I [1 ]
机构
[1] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[2] Saarland Univ, Chem Dept, D-66123 Saarbrucken, Germany
关键词
bioinspired materials; 3D cell encapsulation; cyanobenzothiazole-cysteine click ligation; hydrogels; tunable gelation rate; bioactivity; luciferin adduct; BIOCOMPATIBLE CONDENSATION REACTION; METHYLSULFONE-BASED HYDROGELS; MESENCHYMAL STEM-CELLS; CROSS-LINKED HYDROGELS; MECHANICAL-PROPERTIES; RESPONSIVE HYDROGELS; KINETICS; ENCAPSULATION; REACTIVITY; OXYLUCIFERIN;
D O I
10.1021/acsami.1c22186
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
There is an increasing interest in coupling reactions for cross-linking of cell-encapsulating hydrogels under biocompatible, chemoselective, and tunable conditions. Inspired by the biosynthesis of luciferins in fireflies, here we exploit the cyanobenzothiazole-cysteine (CBT-Cys) click ligation to develop polyethylene glycol hydrogels as tunable scaffolds for cell encapsulation. Taking advantage of the chemoselectivity and versatility of CBT-Cys ligation, a highly flexible gel platform is reported here. We demonstrate luciferin-inspired hydrogels with important advantages for cell encapsulation applications: (i) gel precursors derived from inexpensive reagents and with good stability in aqueous solution (>4 weeks), (ii) adjustable gel mechanics within physiological ranges (E = 180-6240 Pa), (iii) easy tunability of the gelation rate (seconds to minutes) by external means, (iv) high microscale homogeneity, (v) good cytocompatibility, and (iv) regulable biological properties. These flexible and robust CBT-Cys hydrogels are proved as supportive matrices for 3D culture of different cell types, namely, fibroblasts and human mesenchymal stem cells. Our findings expand the toolkit of click chemistries for the fabrication of tunable biomaterials.
引用
收藏
页码:5017 / 5032
页数:16
相关论文
共 70 条
[1]   Human mesenchymal stem cells: from basic biology to clinical applications [J].
Abdallah, B. M. ;
Kassem, M. .
GENE THERAPY, 2008, 15 (02) :109-116
[2]   The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype [J].
Adeloew, Catharina ;
Segura, Tatiana ;
Hubbell, Jeffrey A. ;
Frey, Peter .
BIOMATERIALS, 2008, 29 (03) :314-326
[3]  
Alge DL, 2013, RSC POLYM CHEM SER, V6, P165
[4]   Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine-Norbornene Chemistry [J].
Alge, Daniel L. ;
Azagarsamy, Malar A. ;
Donohue, Dillon F. ;
Anseth, Kristi S. .
BIOMACROMOLECULES, 2013, 14 (04) :949-953
[5]   The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels [J].
Anderson, Sarah B. ;
Lin, Chien-Chi ;
Kuntzler, Donna V. ;
Anseth, Kristi S. .
BIOMATERIALS, 2011, 32 (14) :3564-3574
[6]   3D microniches reveal the importance of cell size and shape [J].
Bao, Min ;
Xie, Jing ;
Piruska, Aigars ;
Huck, Wilhelm T. S. .
NATURE COMMUNICATIONS, 2017, 8
[7]   The effect of matrix characteristics on fibroblast proliferation in 3D gels [J].
Bott, Katrin ;
Upton, Zee ;
Schrobback, Karsten ;
Ehrbar, Martin ;
Hubbell, Jeffrey A. ;
Lutolf, Matthias P. ;
Rizzi, Simone C. .
BIOMATERIALS, 2010, 31 (32) :8454-8464
[8]   A practical guide to hydrogels for cell culture [J].
Caliari, Steven R. ;
Burdick, Jason A. .
NATURE METHODS, 2016, 13 (05) :405-414
[9]   Exploring the Condensation Reaction between Aromatic Nitriles and Amino Thiols To Optimize In Situ Nanoparticle Formation for the Imaging of Proteases and Glycosidases in Cells [J].
Chen, Zixin ;
Chen, Min ;
Cheng, Yunfeng ;
Kowada, Toshiyuki ;
Xie, Jinghang ;
Zheng, Xianchuang ;
Rao, Jianghong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (08) :3272-3279
[10]   Thiol-Epoxy "Click" Chemistry to Engineer Cytocompatible PEG-Based Hydrogel for siRNA-Mediated Osteogenesis of hMSCs [J].
Cong Truc Huynh ;
Liu, Fangze ;
Cheng, Yuxuan ;
Coughlin, Katherine A. ;
Alsberg, Eben .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) :25936-25942