Automatic Liver Segmentation from CT Scans Using Multi-layer Segmentation and Principal Component Analysis

被引:0
作者
Badakhshannoory, Hossein [1 ]
Saeedi, Parvaneh [1 ]
机构
[1] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
来源
ADVANCES IN VISUAL COMPUTING, PT II | 2010年 / 6454卷
关键词
Liver segmentation; 3D organ reconstruction; mean shift segmentation; principal component analysis;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an automatic liver segmentation algorithm for extracting liver masks from CT scan volumes. The proposed method consists of two stages. In the first stage, a multi-layer segmentation scheme is utilized to generate 3D liver mask candidate hypotheses. In the second stage, a 3D liver model, based on the Principal Component Analysis, is created to verify and select the candidate hypothesis that best conforms to the overall 3D liver shape model. The proposed algorithm is tested for MICCAI 2007 grand challenge workshop dataset. The proposed method of this paper at this time stands among the top four proposed automatic methods that have been tested on this dataset.
引用
收藏
页码:342 / 350
页数:9
相关论文
共 50 条
  • [41] Liver segmentation by intensity analysis and anatomical information in multi-slice CT images
    Foruzan, Amir H.
    Zoroofi, Reza Aghaeizadeh
    Hori, Masatoshi
    Sato, Yoshinobu
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2009, 4 (03) : 287 - 297
  • [42] Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks
    Liu, Xiaoming
    Guo, Shuxu
    Yang, Bingtao
    Ma, Shuzhi
    Zhang, Huimao
    Li, Jing
    Sun, Changjian
    Jin, Lanyi
    Li, Xueyan
    Yang, Qi
    Fu, Yu
    JOURNAL OF DIGITAL IMAGING, 2018, 31 (05) : 748 - 760
  • [43] Automatic Liver Segmentation Using Multi-plane Integrated Fully Convolutional Neural Networks
    Wang, Chi
    Song, Hong
    Chen, Lei
    Li, Qiang
    Yang, Jian
    Hu, Xiaohua Tony
    Zhang, Le
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 518 - 523
  • [44] A Framework for Ischemic Beat Detection using Multi-Layer Feedforward Neural Network and Principal Component Analysis (IBD-MLFFNN-PCA)
    Mohanta, Sounak
    Dasgupta, Kousik
    PERCEPTION AND MACHINE INTELLIGENCE, 2015, 2015, : 77 - 84
  • [45] Fully Automatic Liver Segmentation from Multi-slice Spiral Computed Tomographic Images
    Yuan Xin
    Wang Lei
    Geng Weidong
    Hu Hongjie
    CHINESE JOURNAL OF ELECTRONICS, 2009, 18 (04): : 677 - 680
  • [46] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Wang, Jinke
    Zhang, Xiangyang
    Lv, Peiqing
    Wang, Haiying
    Cheng, Yuanzhi
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1479 - 1493
  • [47] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Wang, Jinke
    Zhang, Xiangyang
    Lv, Peiqing
    Wang, Haiying
    Cheng, Yuanzhi
    CANCER MANAGEMENT AND RESEARCH, 2022, 14 : 1479 - 1493
  • [48] Automatic Segmentation and Classification of Liver Abnormalities using Fractal Dimension
    Anter, Ahmed M.
    Hassanien, Aboul Ella
    Schaefer, Gerald
    2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 937 - 941
  • [49] Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
    Jinke Wang
    Xiangyang Zhang
    Peiqing Lv
    Haiying Wang
    Yuanzhi Cheng
    Journal of Digital Imaging, 2022, 35 (6) : 1479 - 1493
  • [50] Automatic Segmentation of Liver from Abdominal Computed Tomography Images Using Energy Feature
    Rajamanickam, Prabakaran
    Darmanayagam, Shiloah Elizabeth
    Raj, Sunil Retmin Raj Cyril
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01): : 709 - 722