Synergy of NiO quantum dots and temperature on enhanced photocatalytic and thermophoto hydrogen evolution

被引:44
作者
Li, Xiaojie [1 ,2 ]
Zhang, Huayang [2 ]
Liu, Yazi [1 ]
Duan, Xiaoguang [2 ]
Xu, Xinyuan [3 ]
Liu, Shaomin [4 ]
Sun, Hongqi [3 ]
Wang, Shaobin [1 ,2 ]
机构
[1] Curtin Univ, WASM Minerals Energy & Chem Engn, GPO Box U1987, Perth, WA 6845, Australia
[2] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[3] Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia
[4] Beijing Univ Chem Technol, Coll Chem Engn, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
基金
澳大利亚研究理事会;
关键词
Quantum dots; Graphitic carbon nitride; Photocatalysis; Thermophotolysis; Hydrogen production; RENEWABLE-ENERGY-SOURCES; GRAPHITIC CARBON NITRIDE; AIR-POLLUTION; INFRARED-LIGHT; Z-SCHEME; G-C3N4; COCATALYST; PERFORMANCE; COMPOSITES; SYSTEMS;
D O I
10.1016/j.cej.2020.124634
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar-to-hydrogen holds a great sustainable energy solution, in which photocatalysis plays an important role. In this study, a composite photocatalyst with NiO quantum dots (NiO QDs) in graphitic carbon nitride (g-CN) was synthesized and evaluated in photocatalytic (PC) and thermophotocatalytic hydrogen evolution reaction (HER) under visible light. A sample of 9 wt% NiO QDs-g-CN achieved the highest PC-HER rate of 130 mu mol.g(-1).h(-1) at ambient condition, 11 times higher than pristine g-CN. Meanwhile the thermophotocatalytic HER rate reached 260.2 mu mol.g(-1).h(-1) at 55 degrees C. Photo-illumination led to the formation of CeO bond between g-CN and NiO QDs to bridge photoelectron transport for low HER overpotential barriers and enhanced electrical conductivity. The higher thermophoto-induced HER can be ascribed to the increased electrical conductivity of NiO QDs-g-CN. This work underlines the importance of chemical binding in hetero-structures and quantum confinement effects in QDs-based composites, and it also demonstrates the thermal sensitivity effect in thermophotocatalytic HER process.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Demand response in smart electricity grids equipped with renewable energy sources: A review [J].
Aghaei, Jamshid ;
Alizadeh, Mohammad-Iman .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 :64-72
[2]   Air pollution and health [J].
Brunekreef, B ;
Holgate, ST .
LANCET, 2002, 360 (9341) :1233-1242
[3]   Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst [J].
Cao, Shaowen ;
Jiang, Jing ;
Zhu, Bicheng ;
Yu, Jiaguo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (28) :19457-19463
[4]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[5]   Microplastic Ingestion by Zooplankton [J].
Cole, Matthew ;
Lindeque, Pennie ;
Fileman, Elaine ;
Halsband, Claudia ;
Goodhead, Rhys ;
Moger, Julian ;
Galloway, Tamara S. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (12) :6646-6655
[6]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[7]   High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting [J].
Fu, Yijun ;
Liu, Chang'an ;
Zhu, Cheng ;
Wang, Huibo ;
Dou, Yujiang ;
Shi, Weilong ;
Shao, Mingwang ;
Huang, Hui ;
Liu, Yang ;
Kang, Zhenhui .
INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (07) :1646-1652
[8]   Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts [J].
Han, Qing ;
Wang, Bing ;
Gao, Jian ;
Qu, Liangti .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (36) :10849-10853
[9]   Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials [J].
Holder, Cameron F. ;
Schaak, Raymond E. .
ACS NANO, 2019, 13 (07) :7359-7365
[10]   Boosting Visible-Light-Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide-Carbon Nitride System [J].
Indra, Arindam ;
Acharjya, Amitava ;
Menezes, Prashanth W. ;
Merschjann, Christoph ;
Hollmann, Dirk ;
Schwarze, Michael ;
Aktas, Mesut ;
Friedrich, Aleksej ;
Lochbrunner, Stefan ;
Thomas, Arne ;
Driess, Matthias .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (06) :1653-1657