Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance

被引:20
作者
Gasinski, L
Papageorgiou, NS
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30072 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
D O I
10.1017/S0308210500001281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider quasilinear hemivariational inequalities at resonance. We obtain existence theorems using Landesman-Lazer-type conditions and multiplicity theorems for problems with strong resonance at infinity. Our method of proof is based on the non-smooth critical point theory for locally Lipschitz functions and on a generalized version of the Ekeland variational principle.
引用
收藏
页码:1091 / 1111
页数:21
相关论文
共 25 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[5]  
CERAMI G, 1978, RENDICONTI ACCADEMIA, V112, P332
[6]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[7]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[8]   Nonlinear hemivariational inequalities at resonance [J].
Gasinski, L ;
Papageorgiou, NS .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (03) :353-364
[9]  
GASINSKI L, 2000, FUNKC EKVACIOJ-SER I, V43, P271
[10]   Eigenvalue problems for variational-hemivariational inequalities at resonance [J].
Goeleven, D ;
Motreanu, D ;
Panagiotopoulos, PD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (02) :161-180