SnO2 nanorod arrays: low temperature growth, surface modification and field emission properties

被引:53
作者
Huang, Hui [1 ]
Lim, Chiew Keat [1 ]
Tse, Man Siu [1 ]
Guo, Jun [2 ]
Tan, Ooi Kiang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
CHEMICAL-VAPOR-DEPOSITION; TIN OXIDE NANORODS; SB-DOPED SNO2; PLASMA TREATMENT; THIN-FILMS; SPRAY-PYROLYSIS; GAS SENSORS; NANOWIRES; FABRICATION; SNO2(110);
D O I
10.1039/c1nr10710k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SnO2 nanorod arrays have been deposited on 4 inch SiO2/Si and Si wafers and stainless steel substrates by plasma-enhanced chemical vapor deposition without any high temperature treatment or additional catalysis. The SnO2 nanorods grow up from seed nanocrystals along the [110] preferential direction by a self-catalyzed vapor-solid growth mechanism. The surface of the SnO2 nanorods was modified by ZnO, Pt and Ni nanocrystals. After surface modification, the field emission properties of the SnO2 nanorod arrays are improved. The Ni nanocrystal with sharp tips and edges act as additional field emission sites to SnO2 nanorods and thus the Ni/SnO2/SiO2/Si outperforms other samples due to the synergistic effects of good conductivity and hierarchical sharp apexes. The field enhancement factor of the Ni/SnO2/SiO2/Si increased around 3 times while the turn-on field of 8.0 V mu m(-1) is about one third of the SnO2/SiO2/Si device.
引用
收藏
页码:1491 / 1496
页数:6
相关论文
共 49 条
  • [1] Large field enhancement at electrochemically grown quasi-1D Ni nanostructures with low-threshold cold-field electron emission
    Banerjee, Arghya Narayan
    Qian, Shizhi
    Joo, Sang W.
    [J]. NANOTECHNOLOGY, 2011, 22 (03)
  • [2] Surface morphologies of SnO2(110)
    Batzill, M
    Katsiev, K
    Diebold, U
    [J]. SURFACE SCIENCE, 2003, 529 (03) : 295 - 311
  • [3] Thermodynamic argument about SnO2 nanoribbon growth
    Beltrán, A
    Andrés, J
    Longo, E
    Leite, ER
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (04) : 635 - 637
  • [4] Sb-doped SnO2 wire:: Highly stable field emitter
    Bhise, Ashok B.
    Late, Dattatray J.
    Walke, Pravin S.
    More, Mahendra A.
    Pillai, Vijayamohanan K.
    Mulla, Imtiaz S.
    Joag, Dilip S.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2007, 307 (01) : 87 - 91
  • [5] Field emission investigation of single Fe-doped SnO2 wire
    Bhise, Ashok B.
    Late, Dattatray J.
    Sathe, Bhaskar R.
    More, Mahendra A.
    Mulla, Imtiaz S.
    Pillai, Vijayamohanan K.
    Joag, Dilip S.
    [J]. SOLID STATE SCIENCES, 2009, 11 (06) : 1114 - 1117
  • [6] Supported Ag-TiO2 core-shell nanofibres formed at low temperature by plasma deposition
    Borras, Ana
    Barranco, Angel
    Yubero, Francisco
    Gonzalez-Elipe, Agustin R.
    [J]. NANOTECHNOLOGY, 2006, 17 (14) : 3518 - 3522
  • [7] Supported plasma-made 1D heterostructures: perspectives and applications
    Borras, Ana
    Macias-Montero, Manuel
    Romero-Gomez, Pablo
    Gonzalez-Elipe, Agustin R.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (17)
  • [8] Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl45H2O water solution
    Brinzari, V
    Korotcenkov, G
    Golovanov, V
    Schwank, J
    Lantto, V
    Saukko, S
    [J]. THIN SOLID FILMS, 2002, 408 (1-2) : 51 - 58
  • [9] Field-emission from long SnO2 nanobelt arrays
    Chen, YJ
    Li, QH
    Liang, YX
    Wang, TH
    Zhao, Q
    Yu, DP
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (23) : 5682 - 5684
  • [10] OXYGEN VACANCIES AND DEFECT ELECTRONIC STATES ON THE SNO2(110)-1X1 SURFACE
    COX, DF
    FRYBERGER, TB
    SEMANCIK, S
    [J]. PHYSICAL REVIEW B, 1988, 38 (03): : 2072 - 2083