A Review of Classification Methods of Remote Sensing Imagery

被引:17
作者
Jia Kun [1 ,2 ]
Li Qiang-zi [1 ]
Tian Yi-chen [1 ]
Wu Bing-fang [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
关键词
Remote sensing; Classification; Classifier; LAND-COVER CLASSIFICATION; SUPPORT VECTOR MACHINES; DECISION TREE CLASSIFICATION; NEURAL-NETWORK; EXPERT-SYSTEM; TIME-SERIES; PIXEL CLASSIFICATION; CROP CLASSIFICATION; MAXIMUM-LIKELIHOOD; SENSED DATA;
D O I
10.3964/j.issn.1000-0593(2011)10-2618-06
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Remote sensing data classification is an important way of information extraction and a hot research topic of remote sensing technique. Classification method of remote sensing data is an important issue, and effective selection of appropriate classifier is especially significant for improving classification accuracy. Along with the development of remote sensing technique, traditional parametric classifier is difficult to meet accuracy requirement, leading to the rapid development of intelligent algorithm based non-parametric classifiers. Recently, combined classifiers become a new hot topic for its ability of utilizing complement information of single classifier. In the present paper, characters and advantages of different classifiers as well as the research prospect are analyzed. The paper provides a scientific reference for the development of remote sensing data classification technique.
引用
收藏
页码:2618 / 2623
页数:6
相关论文
共 53 条
[1]  
[Anonymous], 2008, SCI TECHNOLOGY ENG
[2]   A COMPARISON OF SUPERVISED MAXIMUM-LIKELIHOOD AND DECISION TREE CLASSIFICATION FOR CROP COVER ESTIMATION FROM MULTITEMPORAL LANDSAT MSS DATA [J].
BELWARD, AS ;
DEHOYOS, A .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1987, 8 (02) :229-235
[3]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[4]  
CAI XB, 2006, GEOMATICS INFORM SCI, V4, P311
[5]   Robust support vector method for hyperspectral data classification and knowledge discovery [J].
Camps-Valls, G ;
Gómez-Chova, L ;
Calpe-Maravilla, J ;
Martín-Guerrero, JD ;
Soria-Olivas, E ;
Alonso-Chordá, L ;
Moreno, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (07) :1530-1542
[6]  
Cohen Y., 2002, International Journal of Applied Earth Observation and Geoinformation, V4, P75, DOI 10.1016/S0303-2434(02)00003-X
[7]   Crop classification using multiconfiguration C-band SAR data [J].
Del Frate, F ;
Schiavon, G ;
Solimini, D ;
Borgeaud, M ;
Hoekman, DH ;
Vissers, MAM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (07) :1611-1619
[8]   Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? [J].
Dixon, B. ;
Candade, N. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (04) :1185-1206
[9]  
Duda R. O., 1973, Pattern Classification and Scene Analysis, V3
[10]   Mapping a specific class with an ensemble of classifiers [J].
Foody, G. M. ;
Boyd, D. S. ;
Sanchez-Hernandez, C. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (7-8) :1733-1746