Mobile Encrypted Traffic Classification Using Deep Learning

被引:0
|
作者
Aceto, Giuseppe [1 ,2 ]
Ciuonzo, Domenico [2 ]
Montieri, Antonio [1 ]
Pescape, Antonio [1 ,2 ]
机构
[1] Univ Napoli Federico II, Naples, Italy
[2] NM2 Srl, Naples, Italy
来源
2018 NETWORK TRAFFIC MEASUREMENT AND ANALYSIS CONFERENCE (TMA) | 2018年
关键词
traffic classification; mobile apps; Android apps; iOS apps; encrypted traffic; deep learning; automatic feature extraction;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The massive adoption of hand-held devices has led to the explosion of mobile traffic volumes traversing home and enterprise networks, as well as the Internet. Procedures for inferring (mobile) applications generating such traffic, known as Traffic Classification (TC), are the enabler for highly-valuable profiling information while certainly raise important privacy issues. The design of accurate classifiers is however exacerbated by the increasing adoption of encrypted protocols (such as TLS), hindering the applicability of highly-accurate approaches, such as deep packet inspection. Additionally, the (daily) expanding set of apps and the moving-target nature of mobile traffic makes design solutions with usual machine learning, based on manually-and expert-originated features, outdated. For these reasons, we suggest Deep Learning (DL) as a viable strategy to design traffic classifiers based on automatically-extracted features, reflecting the complex mobile-traffic patterns. To this end, different stateof-the-art DL techniques from TC are here reproduced, dissected, and set into a systematic framework for comparison, including also a performance evaluation workbench. Based on three datasets of real human users' activity, performance of these DL classifiers is critically investigated, highlighting pitfalls, design guidelines, and open issues of DL in mobile encrypted TC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] MIMETIC: Mobile encrypted traffic classification using multimodal deep learning
    Aceto, Giuseppe
    Ciuonzo, Domenico
    Montieri, Antonio
    Pescape, Antonio
    COMPUTER NETWORKS, 2019, 165
  • [2] A Survey of Techniques for Mobile Service Encrypted Traffic Classification Using Deep Learning
    Wang, Pan
    Chen, Xuejiao
    Ye, Feng
    Sun, Zhixin
    IEEE ACCESS, 2019, 7 : 54024 - 54033
  • [3] Toward effective mobile encrypted traffic classification through deep learning
    Aceto, Giuseppe
    Ciuonzo, Domenico
    Montieri, Antonio
    Pescape, Antonio
    NEUROCOMPUTING, 2020, 409 : 306 - 315
  • [4] Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges
    Aceto, Giuseppe
    Ciuonzo, Domenico
    Montieri, Antonio
    Pescape, Antonio
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2019, 16 (02): : 445 - 458
  • [5] Incremental Learning for Mobile Encrypted Traffic Classification
    Chen, Yige
    Zang, Tianning
    Zhang, Yongzheng
    Zhou, Yuan
    Ouyang, Linshu
    Yang, Peng
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [6] Detection of DoH Traffic Tunnels Using Deep Learning for Encrypted Traffic Classification
    Alzighaibi, Ahmad Reda
    COMPUTERS, 2023, 12 (03)
  • [7] Deep Learning for Encrypted Traffic Classification: An Overview
    Rezaei, Shahbaz
    Liu, Xin
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (05) : 76 - 81
  • [8] Deep packet: a novel approach for encrypted traffic classification using deep learning
    Lotfollahi, Mohammad
    Siavoshani, Mahdi Jafari
    Zade, Ramin Shirali Hossein
    Saberian, Mohammdsadegh
    SOFT COMPUTING, 2020, 24 (03) : 1999 - 2012
  • [9] Deep packet: a novel approach for encrypted traffic classification using deep learning
    Mohammad Lotfollahi
    Mahdi Jafari Siavoshani
    Ramin Shirali Hossein Zade
    Mohammdsadegh Saberian
    Soft Computing, 2020, 24 : 1999 - 2012
  • [10] Deep Learning for Encrypted Traffic Classification and Unknown Data Detection
    Pathmaperuma, Madushi H.
    Rahulamathavan, Yogachandran
    Dogan, Safak
    Kondoz, Ahmet M.
    SENSORS, 2022, 22 (19)