Mass Production of Silicon MOS-SETs: Can We Live with Nano-Devices' Variability?

被引:8
作者
Jehl, X. [1 ]
Roche, B. [1 ]
Sanquer, M. [1 ]
Voisin, B. [1 ]
Wacquez, R. [1 ]
Deshpande, V. [2 ]
Previtali, B. [2 ]
Vinet, M. [2 ]
Verduijn, J. [3 ]
Tettamanzi, G. C. [3 ]
Rogge, S. [3 ]
Kotekar-Patil, D. [4 ]
Ruoff, M. [4 ]
Kern, D. [4 ]
Wharam, D. A. [4 ]
Belli, M. [5 ]
Prati, E. [5 ]
Fanciulli, M. [5 ]
机构
[1] INAC, SPSMS, UMR E CEA UJF Grenoble 1, Grenoble, France
[2] MINATEC, LETI, D2NT CEA, Grenoble, France
[3] Kavli inst Nanosci, Delft, Netherlands
[4] Univ Tubingen, Tubingen, Germany
[5] INFM, MDM, Agrate Brianza, Italy
来源
PROCEEDINGS OF THE 2ND EUROPEAN FUTURE TECHNOLOGIES CONFERENCE AND EXHIBITION 2011 (FET 11) | 2011年 / 7卷
关键词
Nanodevices; Single electron transistor; Variability;
D O I
10.1016/j.procs.2011.09.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is very important to study variability of nanodevices because the inability to produce large amounts of identical nanostructures is eventually a bottleneck for any application. In fact variability is already a major concern for CMOS circuits. In this work we report on the variability of dozens of silicon single-electron transistors (SETs). At room temperature their variability is compared with the variability of the most advanced CMOS FET i.e. the ultra thin Silicon-on-Insulator Multiple gate FET (UT SOI MuGFET). We found that dopants diffused from Source -Drain into the edge of the undoped channel are the main source of variability. This emphasizes the role of extrinsic factors like the contact junctions for variability of any nanodevice. (C) Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V.
引用
收藏
页码:266 / 268
页数:3
相关论文
共 7 条
[1]   Single-dopant resonance in a single-electron transistor [J].
Golovach, V. N. ;
Jehl, X. ;
Houzet, M. ;
Pierre, M. ;
Roche, B. ;
Sanquer, M. ;
Glazman, L. I. .
PHYSICAL REVIEW B, 2011, 83 (07)
[2]   Simple and controlled single electron transistor based on doping modulation in silicon nanowires [J].
Hofheinz, M. ;
Jehl, X. ;
Sanquer, M. ;
Molas, G. ;
Vinet, M. ;
Deleonibus, S. .
APPLIED PHYSICS LETTERS, 2006, 89 (14)
[3]   Individual charge traps in silicon nanowires - Measurements of location, spin and occupation number by Coulomb blockade spectroscopy [J].
Hofheinz, M. ;
Jehl, X. ;
Sanquer, M. ;
Molas, G. ;
Vinet, M. ;
Deleonibus, S. .
EUROPEAN PHYSICAL JOURNAL B, 2006, 54 (03) :299-307
[4]  
Pierre M, 2010, NAT NANOTECHNOL, V5, P133, DOI [10.1038/nnano.2009.373, 10.1038/NNANO.2009.373]
[5]   Compact silicon double and triple dots realized with only two gates [J].
Pierre, M. ;
Wacquez, R. ;
Roche, B. ;
Jehl, X. ;
Sanquer, M. ;
Vinet, M. ;
Prati, E. ;
Belli, M. ;
Fanciulli, M. .
APPLIED PHYSICS LETTERS, 2009, 95 (24)
[6]   Background charges and quantum effects in quantum dots transport spectroscopy [J].
Pierre, M. ;
Hofheinz, M. ;
Jehl, X. ;
Sanquer, M. ;
Molas, G. ;
Vinet, M. ;
Deleonibus, S. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 70 (04) :475-481
[7]   Single dopant impact on electrical characteristics of SOI NMOSFETs with effective length down to 10nm [J].
Wacquez, R. ;
Vinet, M. ;
Pierre, M. ;
Roche, B. ;
Jehl, X. ;
Cueto, O. ;
Verduijn, J. ;
Tettamanzi, G. C. ;
Rogge, S. ;
Deshpande, V. ;
Previtali, B. ;
Vizioz, C. ;
Pauliac-Vaujour, S. ;
Comboroure, C. ;
Bove, N. ;
Faynot, O. ;
Sanquer, M. .
2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, :193-+