Maximizing association statistics over genetic models

被引:91
作者
Gonzalez, Juan R. [1 ,2 ]
Carrasco, Josep L. [2 ]
Dudbridge, Frank [3 ]
Armengol, Lluis [4 ]
Estivill, Xavier [4 ]
Moreno, Victor [5 ]
机构
[1] Ctr Res Environm Epidemiol, Barcelona 08003, Spain
[2] Univ Barcelona, Dept Publ Hlth, Biostat Unit, E-08007 Barcelona, Spain
[3] MRC, Biostat Unit, Cambridge CB2 2BW, England
[4] Ctr Genom Regulat, Genes & Dis Program, Barcelona, Spain
[5] Catalan Inst Oncol, IDIBELL, Barcelona, Spain
关键词
genetic models; max-statistic; mode of inheritance; power;
D O I
10.1002/gepi.20299
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The assessment of the association between a candidate locus and a disease may require the assumption of an inheritance model. Most researchers select the additive model and test the association with the Cochran-Armitage trend test. This test assumes a dose-response effect with regard to the number of copies of the variant allele. However, if there is reason to expect dominance or recessiveness in the effect of the variant allele, the heterozygous genotype may be grouped with one of the two homozygous, depending on the inheritance model, and a simple test on the 2 x 2 table can be used to assess independence. When the underlying genetic model is unknown, association may be assessed using the max-statistic, which selects the largest test statistic from the dominant, recessive and additive models. The statistical significance of the max-statistic has been previously addressed using permutation or Monte Carlo simulation approaches. We aimed to provide simpler alternatives to the max-test to make it feasible in large-scale association studies. Our simulations show that this procedure has an effective number of tests of 2.2, which can be used to correct the significance level or P-values. We also derive the asymptotic distribution of max-statistic, which leads to a simple way to calculate the significance level and allows the derivation of a formula for power calculations in the design of studies that plan to use the max-statistic. A simulation study shows that the use of the max-statistic is a powerful approach that provides safeguard against model uncertainty.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 2011, Categorical data analysis
[2]   TESTS FOR LINEAR TRENDS IN PROPORTIONS AND FREQUENCIES [J].
ARMITAGE, P .
BIOMETRICS, 1955, 11 (03) :375-386
[3]   A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes [J].
Cargill, Michele ;
Schrodi, Steven J. ;
Chang, Monica ;
Garcia, Veronica E. ;
Brandon, Rhonda ;
Callis, Kristina P. ;
Matsunami, Nori ;
Ardlie, Kristin G. ;
Civello, Daniel ;
Catanese, Joseph J. ;
Leong, Diane U. ;
Panko, Jackie M. ;
McAllister, Linda B. ;
Hansen, Christopher B. ;
Papenfuss, Jason ;
Prescott, Stephen M. ;
White, Thomas J. ;
Leppert, Mark F. ;
Krueger, Gerald G. ;
Begovich, Ann B. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 80 (02) :273-290
[4]   ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS [J].
CHAPMAN, DG ;
NAM, JM .
BIOMETRICS, 1968, 24 (02) :315-&
[5]   A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data:: Application to HLA in type 1 diabetes [J].
Cordell, HJ ;
Clayton, DG .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (01) :124-141
[6]   Trend tests for case-control studies of genetic markers: Power, sample size and robustness [J].
Freidlin, B ;
Zheng, G ;
Li, ZH ;
Gastwirth, JL .
HUMAN HEREDITY, 2002, 53 (03) :146-152
[7]  
Genz A., 1992, Journal of Computational and Graphical Statistics, V1, P141, DOI [DOI 10.2307/1390838, 10.2307/1390838, DOI 10.1080/10618600.1992.10477010]
[8]   SNPassoc:: an R package to perform whole genome association studies [J].
Gonzalez, Juan R. ;
Armengol, Lluis ;
Sole, Xavier ;
Guino, Elisabet ;
Mercader, Josep M. ;
Estivill, Xavier ;
Moreno, Victor .
BIOINFORMATICS, 2007, 23 (05) :644-645
[9]   POWER AND SAMPLE-SIZE FOR APPROXIMATE CHI-SQUARE TESTS [J].
GUENTHER, WC .
AMERICAN STATISTICIAN, 1977, 31 (02) :83-85
[10]   ERCC4 associated with breast cancer risk:: A two-stage case-control study using high-throughput genotyping [J].
Milne, Roger Laughlin ;
Ribas, Gloria ;
Gonzalez-Neira, Anna ;
Fagerhohn, Rainer ;
Salas, Antonio ;
Gonzalez, Emilio ;
Dopazo, Joaquin ;
Nevanlinna, Heli ;
Robledo, Mercedes ;
Benitez, Javier .
CANCER RESEARCH, 2006, 66 (19) :9420-9427