Cardiotoxicity of immune checkpoint inhibitors

被引:187
作者
Varricchi, Gilda [1 ,2 ,3 ]
Galdiero, Maria Rosaria [1 ,2 ,3 ]
Marone, Giancarlo [4 ,5 ]
Criscuolo, Gjada [1 ]
Triassi, Maria [4 ]
Bonaduce, Domenico [1 ,2 ,3 ]
Marone, Gianni [1 ,2 ,3 ,6 ]
Tocchetti, Carlo Gabriele [1 ,2 ,3 ]
机构
[1] Univ Naples Federico II, Dept Translat Med Sci, Naples, Italy
[2] Univ Naples Federico II, Ctr Basic & Clin Immunol Res CISI, Naples, Italy
[3] Univ Naples Federico II, WAO Ctr Excellence, Naples, Italy
[4] Univ Naples Federico II, Sect Hyg, Dept Publ Hlth, Naples, Italy
[5] Monaldi Hosp Pharm, Naples, Italy
[6] CNR, CNR, Inst Expt Endocrinol & Oncol Gaetano Salvatore, Naples, Italy
关键词
PD-1; BLOCKADE; ANTI-PD-1; ANTIBODY; AUTOIMMUNE MYOCARDITIS; DILATED CARDIOMYOPATHY; ANTITUMOR IMMUNITY; ADVANCED MELANOMA; CLINICAL ACTIVITY; CANCER-THERAPY; ADVERSE EVENTS; SOLID TUMORS;
D O I
10.1136/esmoopen-2017-000247
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cardiac toxicity after conventional antineoplastic drugs (eg, anthracyclines) has historically been a relevant issue. In addition, targeted therapies and biological molecules can also induce cardiotoxicity. Immune checkpoint inhibitors are a novel class of anticancer drugs, distinct from targeted or tumour type-specific therapies. Cancer immunotherapy with immune checkpoint blockers (ie, monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and its ligand (PD-L1)) has revolutionised the management of a wide variety of malignancies endowed with poor prognosis. These inhibitors unleash antitumour immunity, mediate cancer regression and improve the survival in a percentage of patients with different types of malignancies, but can also produce a wide spectrum of immune-related adverse events. Interestingly, PD-1 and PD-L1 are expressed in rodent and human cardiomyocytes, and early animal studies have demonstrated that CTLA-4 and PD-1 deletion can cause autoimmune myocarditis. Cardiac toxicity has largely been underestimated in recent reviews of toxicity of checkpoint inhibitors, but during the last years several cases of myocarditis and fatal heart failure have been reported in patients treated with checkpoint inhibitors alone and in combination. Here we describe the mechanisms of the most prominent checkpoint inhibitors, specifically ipilimumab (anti-CTLA-4, the godfather of checkpoint inhibitors) patient and monoclonal antibodies targeting PD-1 (eg, nivolumab, pembrolizumab) and PD-L1 (eg, atezolizumab). We also discuss what is known and what needs to be done about cardiotoxicity of checkpoint inhibitors in patients with cancer. Severe cardiovascular effects associated with checkpoint blockade introduce important issues for oncologists, cardiologists and immunologists.
引用
收藏
页数:12
相关论文
共 140 条
[1]   MANIPULATION OF COSTIMULATORY SIGNALS TO ENHANCE ANTITUMOR T-CELL RESPONSES [J].
ALLISON, JP ;
HURWITZ, AA ;
LEACH, DR .
CURRENT OPINION IN IMMUNOLOGY, 1995, 7 (05) :682-686
[2]   Immunotherapy Combined or Sequenced With Targeted Therapy in the Treatment of Solid Tumors: Current Perspectives [J].
Atkins, Michael B. ;
Larkin, James .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2016, 108 (06)
[3]   B70 ANTIGEN IS A 2ND LIGAND FOR CTLA-4 AND CD28 [J].
AZUMA, M ;
ITO, D ;
YAGITA, H ;
OKUMURA, K ;
PHILLIPS, JH ;
LANIER, LL ;
SOMOZA, C .
NATURE, 1993, 366 (6450) :76-79
[4]   B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells [J].
Azuma, Takeshi ;
Yao, Sheng ;
Zhu, Gefeng ;
Flies, Andrew S. ;
Flies, Sarah J. ;
Chen, Lieping .
BLOOD, 2008, 111 (07) :3635-3643
[5]   Upregulation of Programmed Death-1 and Its Ligand in Cardiac Injury Models: Interaction with GADD153 [J].
Baban, Babak ;
Liu, Jun Yao ;
Qin, Xu ;
Weintraub, Neal L. ;
Mozaffari, Mahmood S. .
PLOS ONE, 2015, 10 (04)
[6]   Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma [J].
Badros, Ashraf ;
Hyjek, Elizabeth ;
Ma, Ning ;
Lesokhin, Alexander ;
Dogan, Ahmet ;
Rapoport, Aaron P. ;
Kocoglu, Mehmet ;
Lederer, Emily ;
Philip, Sunita ;
Milliron, Todd ;
Dell, Cameron ;
Goloubeva, Olga ;
Singh, Zeba .
BLOOD, 2017, 130 (10) :1189-1197
[7]   Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma [J].
Bellmunt, J. ;
de Wit, R. ;
Vaughn, D. J. ;
Fradet, Y. ;
Lee, J. -L. ;
Fong, L. ;
Vogelzang, N. J. ;
Climent, M. A. ;
Petrylak, D. P. ;
Choueiri, T. K. ;
Necchi, A. ;
Gerritsen, W. ;
Gurney, H. ;
Quinn, D. I. ;
Culine, S. ;
Sternberg, C. N. ;
Mai, Y. ;
Poehlein, C. H. ;
Perini, R. F. ;
Bajorin, D. F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (11) :1015-1026
[8]   Cancer Therapy-Related Cardiac Dysfunction and Heart Failure Part 1: Definitions, Pathophysiology, Risk Factors, and Imaging [J].
Bloom, Michelle W. ;
Hamo, Carine E. ;
Cardinale, Daniela ;
Ky, Bonnie ;
Nohria, Anju ;
Baer, Lea ;
Skopicki, Hal ;
Lenihan, Daniel J. ;
Gheorghiade, Mihai ;
Lyon, Alexander R. ;
Butler, Javed .
CIRCULATION-HEART FAILURE, 2016, 9 (01)
[9]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[10]   Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway [J].
Boussiotis, Vassiliki A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (18) :1767-1778