Multi-Objective Feature Selection With Missing Data in Classification

被引:113
|
作者
Xue, Yu [1 ]
Tang, Yihang [1 ]
Xu, Xin [1 ]
Liang, Jiayu [2 ]
Neri, Ferrante [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Tiangong Univ, Tianjin Key Lab Autonomous Intelligent Technol &, Tianjin 300387, Peoples R China
[3] Univ Nottingham, Sch Comp Sci, Nottingham NG7 2RD, England
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2022年 / 6卷 / 02期
基金
中国国家自然科学基金;
关键词
Sorting; Statistics; Sociology; Optimization; Feature extraction; Genetic algorithms; Machine learning; Feature selection; Multi-objective; NSGA-III; Missing data; PARTICLE SWARM OPTIMIZATION; EVOLUTIONARY ALGORITHM; GENETIC ALGORITHM; IMPUTATION; MECHANISM;
D O I
10.1109/TETCI.2021.3074147
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection (FS) is an important research topic in machine learning. Usually, FS is modelled as a bi-objective optimization problem whose objectives are: 1) classification accuracy; 2) number of features. One of the main issues in real-world applications is missing data. Databases with missing data are likely to be unreliable. Thus, FS performed on a data set missing some data is also unreliable. In order to directly control this issue plaguing the field, we propose in this study a novel modelling of FS: we include reliability as the third objective of the problem. In order to address the modified problem, we propose the application of the non-dominated sorting genetic algorithm-III (NSGA-III). We selected six incomplete data sets from the University of California Irvine (UCI) machine learning repository. We used the mean imputation method to deal with the missing data. In the experiments, k-nearest neighbors (K-NN) is used as the classifier to evaluate the feature subsets. Experimental results show that the proposed three-objective model coupled with NSGA-III efficiently addresses the FS problem for the six data sets included in this study.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 50 条
  • [1] Multi-task Optimisation for Multi-objective Feature Selection in Classification
    Lin, Jiabin
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 264 - 267
  • [2] Multi-objective techniques for feature selection and classification in digital mammography
    Thawkar, Shankar
    Singh, Law Kumar
    Khanna, Munish
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2021, 15 (01): : 115 - 125
  • [3] Multi-objective Feature Selection in Classification: A Differential Evolution Approach
    Xue, Bing
    Fu, Wenlong
    Zhang, Mengjie
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 516 - 528
  • [4] Online feature selection system for big data classification based on multi-objective automated negotiation
    BenSaid, Fatma
    Alimi, Adel M.
    PATTERN RECOGNITION, 2021, 110
  • [5] Multi-objective Evolutionary Feature Selection
    Kundu, Partha Pratim
    Mitra, Sushmita
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 74 - 79
  • [6] Multi-objective feature selection with NSGA
    Hamdani, Tarek M.
    Won, Jin-Myung
    Alimi, Adel M.
    Karray, Fakhri
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 240 - +
  • [7] Multi-Objective Optimization of Feature Selection Procedure for EEG Signals Classification
    Cimpanu, Corina
    Ferariu, Lavinia
    Dumitriu, Tiberius
    Ungureanu, Florina
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 434 - 437
  • [8] MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS FOR FILTER BASED FEATURE SELECTION IN CLASSIFICATION
    Xue, Bing
    Cervante, Liam
    Shang, Lin
    Browne, Will N.
    Zhang, Mengjie
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2013, 22 (04)
  • [9] Evolutionary Sequential Transfer Learning for Multi-Objective Feature Selection in Classification
    Lin, Jiabin
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 1019 - 1033
  • [10] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE Access, 2020, 8 : 106247 - 106263