Local structure and thermoelectric properties of Mg2Si0.977-xGexBi0.023 (0.1 ≤ x ≤ 0.4)

被引:19
作者
Farahi, Nader [1 ,2 ]
Prabhudev, Sagar [3 ]
Botton, Gianluigi A. [3 ]
Zhao, Jianbao [4 ]
Tse, John S. [4 ]
Liu, Zhenxian [5 ]
Salvador, James R. [6 ]
Kleinke, Holger [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L8, Canada
[4] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
[5] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA
[6] Gen Motors Res & Dev Ctr, Warren, MI 48090 USA
关键词
Thermoelectrics; Semiconductors; Mg2Si; TEM; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; EFFICIENCY; MG2SI; FIGURE; MERIT; BI;
D O I
10.1016/j.jallcom.2015.04.190
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigated the effect of germanium substitution for silicon in bismuth doped Mg2Si. This alloying reduces the thermal conductivity from above 7W m(-1) K-1 to 2.7W m(-1) K-1 at around 300 K in part due to the added mass contrast. High resolution transmission electron microscopy (HRTEM) revealed the presence of Ge-rich domains within the Mg-2(Si,Ge,Bi) particles, contributing to decreasing thermal conductivity with increasing Ge content up to 0.3 Ge per formula unit. The electrical conductivity also decreases with Ge alloying because of the increasing amount of scattering centers, while the Seebeck coefficient increased only very slightly. In total, the positive effect of Ge substitution on the thermoelectric properties of Bi doped Mg2Si resulted in a figure of merit of 0.7 at 773 K for Mg2Si0.677Ge0.3Bi0.023 sample. The optimum amount of Bi seems to be 0.023 per formula unit (0.77 at%), since lower Bi content resulted in electrical conductivity that is too low, and higher Bi content generated the Mg3Bi2 intermetallic phase. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 44 条
[1]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Yb14MnSb11:: New high efficiency thermoelectric material for power generation [J].
Brown, SR ;
Kauzlarich, SM ;
Gascoin, F ;
Snyder, GJ .
CHEMISTRY OF MATERIALS, 2006, 18 (07) :1873-1877
[4]   Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles [J].
Cederkrantz, D. ;
Farahi, N. ;
Borup, K. A. ;
Iversen, B. B. ;
Nygren, M. ;
Palmqvist, A. E. C. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (02)
[5]   Microstructural effects on thermoelectric efficiency: A case study on magnesium suicide [J].
de Boor, Johannes ;
Dasgupta, Titas ;
Kolb, Hendrik ;
Compere, Camille ;
Kelm, Klemens ;
Mueller, Echard .
ACTA MATERIALIA, 2014, 77 :68-75
[6]   Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties [J].
Farahi, Nader ;
VanZant, Mathew ;
Zhao, Jianbao ;
Tse, John S. ;
Prabhudev, Sagar ;
Botton, Gianluigi A. ;
Salvador, James R. ;
Borondics, Ferenc ;
Liu, Zhenxian ;
Kleinke, Holger .
DALTON TRANSACTIONS, 2014, 43 (40) :14983-14991
[7]   Kinetic properties of p-type Mg2Ge0.4Sn0.6 solid solutions [J].
Fedorov, MI ;
Zaitsev, VK ;
Isachenko, GN ;
Eremin, IS ;
Gurieva, EA ;
Konstantinov, PP ;
Shabaldin, AA .
ICT: 2005 24TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2005, :110-113
[8]   Features of conduction mechanism in n-type Mg2Si1-xSnx solid solutions [J].
Fedorov, MI ;
Pshenay-Severin, DA ;
Zaitsev, VK ;
Sano, S ;
Vedernikov, MV .
TWENTY-SECOND INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT '03, 2003, :142-145
[9]  
Fistul V. I, 1995, HEAVILY DOPED SEMICO
[10]  
Fox M., 2010, OPTICAL PROPERTIES S, P396