Fourier series of Jacobi-Sobolev polynomials

被引:14
作者
Ciaurri, Oscar [1 ]
Minguez Ceniceros, Judit [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono, Spain
关键词
Sobolev-type inner product; Sobolev polynomials; Jacobi polynomials; partial sum operator; INEQUALITIES; NORM;
D O I
10.1080/10652469.2018.1560279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {q(n)((alpha,beta,m)) (chi)}(n >= 0) be the orthonormal polynomials with respect to the Sobolev- type inner product (f, g)(alpha,beta,m) = Sigma(m)(k=0) integral(1)(-1) f ((k))(x)(g(k))(x) dwa(alpha+k), beta+k(x), a, beta > -1, m >= 1, where dwa, b(x) = (1 -x) a(1 + x) b dx. We obtain necessary and sufficient conditions for the uniform boundedness of the partial sum operators related to this sequence of polynomials in the Sobolev space W-alpha,beta(p,m) As a consequence, we deduce the convergence of such partial sums in the norm of W-alpha,beta(p,m).
引用
收藏
页码:334 / 346
页数:13
相关论文
共 15 条
[1]   WEIGHTED WEAK TYPE HARDY INEQUALITIES WITH APPLICATIONS TO HILBERT-TRANSFORMS AND MAXIMAL FUNCTIONS [J].
ANDERSEN, KF ;
MUCKENHOUPT, B .
STUDIA MATHEMATICA, 1982, 72 (01) :9-26
[2]   Jacobi transplantation revisited [J].
Ciaurri, Oscar ;
Nowak, Adam ;
Stempak, Krzysztof .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (02) :355-380
[3]   Fourier Series of Gegenbauer-Sobolev Polynomials [J].
Ciaurri, Oscar ;
Minguez, Judit .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[4]  
Guadalupe J. J., 1991, PUBL MAT, V35, P449
[5]  
Guadalupe JJ, 1996, CONSTR APPROX, V12, P341
[6]   On the norm of the Fourier-Jacobi projection [J].
Levesley, J ;
Kushpel, AK .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (7-8) :941-952
[7]   Weighted Sobolev spaces: Markov-type inequalities and duality [J].
Marcellan, Francisco ;
Quintana, Yamilet ;
Rodriguez, Jose M. .
BULLETIN OF MATHEMATICAL SCIENCES, 2018, 8 (02) :233-256
[8]   On Sobolev orthogonal polynomials [J].
Marcellan, Francisco ;
Xu, Yuan .
EXPOSITIONES MATHEMATICAE, 2015, 33 (03) :308-352
[9]   On the Pollard decomposition method applied to some Jacobi-Sobolev expansions [J].
Marcellan, Francisco ;
Quintana, Yamilet ;
Urieles, Alejandro .
TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (06) :934-948
[10]   MEAN CONVERGENCE OF JACOBI SERIES [J].
MUCKENHO.B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (02) :306-&