A Multivariate Empirical Mode Decomposition Based Approach to Pansharpening

被引:40
|
作者
Abdullah, Syed Muhammad Umer [1 ]
Rehman, Naveed Ur [2 ]
Khan, Muhammad Murtaza [3 ]
Mandic, Danilo P. [4 ]
机构
[1] Halliburton Worldwide Ltd, Islamabad 44000, Pakistan
[2] COM SATS Inst Informat Technol, Dept Elect Engn, Islamabad 44000, Pakistan
[3] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad 46000, Pakistan
[4] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 07期
基金
英国工程与自然科学研究理事会;
关键词
Image fusion; multi-resolution analysis; multivariate empirical mode decomposition; pansharpening; SPECTRAL RESOLUTION IMAGES; FUSION; WAVELET;
D O I
10.1109/TGRS.2015.2388497
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a novel class of schemes for the pansharpening of multispectral (MS) images using a multivariate empirical mode decomposition (MEMD) algorithm. MEMD is an extension of the empirical mode decomposition (EMD) algorithm, which enables the decomposition of multivariate data into its intrinsic oscillatory scales. The ability of MEMD to process multichannel data directly by performing data-driven, local, and multiscale analysis makes it a perfect match for pansharpening applications, a task for which standard univariate EMD is ill-equipped due to the nonuniqueness, mode-mixing, and mode-misalignment issues. We show that MEMD overcomes the limitations of standard EMD and yields improved spatial and spectral performance in the context of pansharpening of MS images. The potential of the proposed schemes is further demonstrated through comparative analysis against a number of standard pansharpening algorithms on both simulated Pleiades and real-world IKONOS data sets.
引用
收藏
页码:3974 / 3984
页数:11
相关论文
共 50 条
  • [21] Assessment of Multifractal Fingerprints of Reference Evapotranspiration Based on Multivariate Empirical Mode Decomposition
    Sankaran, Adarsh
    Plocoste, Thomas
    Nourani, Vahid
    Vahab, Shamseena
    Salim, Aayisha
    ATMOSPHERE, 2023, 14 (08)
  • [22] Multivariate empirical mode decomposition and application to multichannel filtering
    Fleureau, Julien
    Kachenoura, Amar
    Albera, Laurent
    Nunes, Jean-Claude
    Senhadji, Lotfi
    SIGNAL PROCESSING, 2011, 91 (12) : 2783 - 2792
  • [23] Multivariate Empirical Mode Decomposition analysis of Swarm data
    Alberti, T.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2018, 41 (03):
  • [24] Elastic-Net Regression based on Empirical Mode Decomposition for Multivariate Predictors
    Al-Jawarneh, Abdullah Suleiman
    Ismail, Mohd Tahir
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 29 (01): : 199 - 215
  • [25] Envelope approach based on special knots for empirical mode decomposition
    Xu, Z.
    Huang, B.
    Zhang, F.
    ELECTRONICS LETTERS, 2009, 45 (09) : 480 - 481
  • [26] Image fusion approach based on bidimensional empirical mode decomposition
    Zheng, Youzhi
    Qin, Zheng
    Hou, Xiaodong
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 273 - +
  • [27] An Improved Approach for Suppressing Noise Based on Empirical Mode Decomposition
    Liu, Baotong
    2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2015, : 1858 - 1862
  • [28] An oblique-extrema-based approach for empirical mode decomposition
    Yang, Zhijing
    Yang, Lihua
    Qing, Chunmei
    DIGITAL SIGNAL PROCESSING, 2010, 20 (03) : 699 - 714
  • [29] Pansharpening Scheme Using Bi-dimensional Empirical Mode Decomposition and Neural Network
    Saxena, Nidhi
    Raman, Balasubramanian
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [30] A joint framework for multivariate signal denoising using multivariate empirical mode decomposition
    Hao, Huan
    Wang, H. L.
    Rehman, N. U.
    SIGNAL PROCESSING, 2017, 135 : 263 - 273