A Multivariate Empirical Mode Decomposition Based Approach to Pansharpening

被引:40
|
作者
Abdullah, Syed Muhammad Umer [1 ]
Rehman, Naveed Ur [2 ]
Khan, Muhammad Murtaza [3 ]
Mandic, Danilo P. [4 ]
机构
[1] Halliburton Worldwide Ltd, Islamabad 44000, Pakistan
[2] COM SATS Inst Informat Technol, Dept Elect Engn, Islamabad 44000, Pakistan
[3] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad 46000, Pakistan
[4] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 07期
基金
英国工程与自然科学研究理事会;
关键词
Image fusion; multi-resolution analysis; multivariate empirical mode decomposition; pansharpening; SPECTRAL RESOLUTION IMAGES; FUSION; WAVELET;
D O I
10.1109/TGRS.2015.2388497
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a novel class of schemes for the pansharpening of multispectral (MS) images using a multivariate empirical mode decomposition (MEMD) algorithm. MEMD is an extension of the empirical mode decomposition (EMD) algorithm, which enables the decomposition of multivariate data into its intrinsic oscillatory scales. The ability of MEMD to process multichannel data directly by performing data-driven, local, and multiscale analysis makes it a perfect match for pansharpening applications, a task for which standard univariate EMD is ill-equipped due to the nonuniqueness, mode-mixing, and mode-misalignment issues. We show that MEMD overcomes the limitations of standard EMD and yields improved spatial and spectral performance in the context of pansharpening of MS images. The potential of the proposed schemes is further demonstrated through comparative analysis against a number of standard pansharpening algorithms on both simulated Pleiades and real-world IKONOS data sets.
引用
收藏
页码:3974 / 3984
页数:11
相关论文
共 50 条
  • [1] Multivariate empirical mode decomposition
    Rehman, N.
    Mandic, D. P.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2117): : 1291 - 1302
  • [2] Fast Multivariate Empirical Mode Decomposition
    Lang, Xun
    Zheng, Qian
    Zhang, Zhiming
    Lu, Shan
    Xie, Lei
    Horch, Alexander
    Su, Hongye
    IEEE ACCESS, 2018, 6 : 65521 - 65538
  • [3] Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns
    Zhou, Xiang
    Yang, Tao
    Zou, Haihua
    Zhao, Hong
    OPTICS LETTERS, 2012, 37 (11) : 1904 - 1906
  • [4] Dynamically sampled multivariate empirical mode decomposition
    Rehman, N.
    Naveed, K.
    Safdar, M. W.
    Ehsan, S.
    McDonald-Maier, K. D.
    ELECTRONICS LETTERS, 2015, 51 (24) : 2049 - 2050
  • [5] Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization
    Mutlu, Ali Yener
    Aviyente, Selin
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [6] Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization
    Ali Yener Mutlu
    Selin Aviyente
    EURASIP Journal on Advances in Signal Processing, 2011
  • [7] A Multivariate Empirical Mode Decomposition based Filtering for Subject Independent BCI
    Gaur, Pramod
    Pachori, Rain Bilas
    Wang, Hui
    Prasad, Girijesh
    2016 27TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2016,
  • [8] Water quality event detection based on Multivariate empirical mode decomposition
    Yang, Zheling
    Liu, Yang
    Hou, Dibo
    Feng, Tianheng
    Wei, Yuan
    Zhang, Jian
    Huang, Pingjie
    Zhang, Guangxin
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2663 - 2668
  • [9] Trend analysis approach based on empirical mode decomposition
    Gao, Qiang
    Li, Liang-Min
    Meng, Qing-Feng
    Fan, Hong
    Lei, Ya-Guo
    Zhendong yu Chongji/Journal of Vibration and Shock, 2007, 26 (08): : 98 - 100
  • [10] An Improved Signal Processing Approach Based on Analysis Mode Decomposition and Empirical Mode Decomposition
    Chen, Zhongzhe
    Liu, Baqiao
    Yan, Xiaogang
    Yang, Hongquan
    ENERGIES, 2019, 12 (16)