Advances in application of ionic liquids: fabrication of surface nanoscale oxide structures by anodization of metals and alloys

被引:10
作者
Lebedeva, Olga [1 ]
Kultin, Dmitry [1 ]
Zakharov, Alexandre [2 ]
Kustov, Leonid [1 ,3 ,4 ]
机构
[1] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
[2] Bauman Moscow State Tech Univ, Dept Fundamental Sci, 2-Ya Baumanskaya 5, Moscow 105005, Russia
[3] Russian Acad Sci, ND Zelinsky Inst Organ Chem, Leninsky Prospect 47, Moscow 119991, Russia
[4] Natl Univ Sci & Technol MISiS, Leninsky Prospect 4, Moscow, Russia
关键词
Nanostructure; Ionic liquids; Electrochemistry; Anodization; Nanostructured surface oxides; Native films; Self-ordered surface films; TIO2 NANOTUBE ARRAYS; DEEP EUTECTIC SOLVENTS; HIGH-ASPECT-RATIO; ANODIC POROUS ALUMINA; ELECTROCHEMICAL SYNTHESIS; SELF-ORGANIZATION; GROWTH; WATER; DISSOLUTION; CORROSION;
D O I
10.1016/j.surfin.2022.102345
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of ionic liquids (ILs) for the known processes for providing the targeted fabrication of the products with the required characteristics is discussed. The advantages of ILs over aqueous solutions of mineral acids in the presence of aggressive fluoride ions are considered by using the examples of anodizing, which leads to a change in the structure of the metal surface. The methods of production of oxide nanoscale dimples, tubes, cells, rods are summarized. Electrochemical finishing of metals and alloys in deep eutectic solvents (DES) and ILs was shown to allow one to obtain new nanoscale structures that are not formed in aqueous acid solutions. The conditions for the formation of unusual nanoscale TiO2 double-wall tubes by anodizing of Ti in ILs are described. The role of the anion and cation nature of IL in the formation of self-ordered nanoscale surface structures is discussed.
引用
收藏
页数:16
相关论文
共 154 条
[51]   Split TiO2 nanotubes - Evidence of oxygen evolution during Ti anodization [J].
Huang, Wenqiang ;
Xu, Haoqing ;
Ying, Zongrong ;
Dan, Yuxin ;
Zhou, Qinyi ;
Zhang, Jiajun ;
Zhu, Xufei .
ELECTROCHEMISTRY COMMUNICATIONS, 2019, 106
[52]   High-speed galvanostatic anodizing without oxide burning using a nanodimpled aluminum surface for nanoporous alumina fabrication [J].
Iwai, Mana ;
Kikuchi, Tatsuya ;
Suzuki, Ryosuke O. .
APPLIED SURFACE SCIENCE, 2021, 537
[53]   Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications [J].
Jani, Abdul Mutalib Md ;
Losic, Dusan ;
Voelcker, Nicolas H. .
PROGRESS IN MATERIALS SCIENCE, 2013, 58 (05) :636-704
[54]   Electrochemical Oxidation of Ti15Mo Alloy-The Impact of Anodization Parameters on Surface Morphology of Nanostructured Oxide Layers [J].
Jarosz, Magdalena ;
Zaraska, Leszek ;
Koziel, Marcin ;
Simka, Wojciech ;
Sulka, Grzegorz D. .
NANOMATERIALS, 2021, 11 (01) :1-14
[55]   Dye-sensitized solar cells based on oriented TiO2 nanotube arrays:: Transport, trapping, and transfer of electrons [J].
Jennings, James R. ;
Ghicov, Andrei ;
Peter, Laurence M. ;
Schmuki, Patrik ;
Walker, Alison B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (40) :13364-13372
[56]   Double-Wall Anodic Titania Nanotube Arrays for Water Photooxidation [J].
John, Shiny E. ;
Mohapatra, Susanta K. ;
Misra, Mano .
LANGMUIR, 2009, 25 (14) :8240-8247
[57]  
Jones D.A., 1996, Principles and prevention of corrosion
[58]   Atmospheric corrosion of nickel in various outdoor environments [J].
Jouen, S ;
Jean, A ;
Hannoyer, B .
CORROSION SCIENCE, 2004, 46 (02) :499-514
[59]   Formation of a regular cellular structure on the surface of Zr67Ni30Si3 alloy at electrochemical polishing in ionic liquids [J].
Kalmykov, K. B. ;
Dmitrieva, N. E. ;
Lebedeva, O. K. ;
Root, N. V. ;
Kultin, D. Yu. ;
Kustov, L. M. .
RUSSIAN CHEMICAL BULLETIN, 2016, 65 (12) :2801-2804
[60]  
Keil P, 2007, AIP CONF PROC, V882, P490