Numerical study of natural convection characteristics of nanofluids in an enclosure using multiphase model

被引:6
作者
Chen, Yan-Jun [1 ]
Wang, Ping-Yang [1 ]
Liu, Zhen-Hua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
HEAT-TRANSFER ENHANCEMENT; LATTICE BOLTZMANN SIMULATION; AL2O3-WATER NANOFLUID; UNCERTAINTIES; VISCOSITY; FLOW;
D O I
10.1007/s00231-016-1760-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
The natural convective heat transfer and flow characteristics of nanofluids in an enclosure are numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results are compared with the experimental results from the published papers to investigate the applicability of these models for nanofluids from a macro standpoint. The effects of Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics are investigated and discussed. Comparisons of the horizontal and vertical central dimensionless velocity profiles between nanofluid and water for various Grashof numbers are studied. In addition, both streamline contours and isotherms lines for different volume concentrations of nanofluids are analyzed as well. The study results show that a great deviation exists between the simulated result of the single phase model and the experimental data on the relation of Nusselt number and Rayleigh number, which indicates that the single phase model cannot reflect the heat transfer characteristic of nanofluid. While the simulated results using the multiphase-flow model show a good agreement with the experimental data of nanofluid, which means that the multiphase-flow model is more suitable for the numerical study of nanofluid. For the natural convection, the present study holds the point that using Grashof numbers as the benchmark would be more appropriate to describe the heat transfer characteristics of nanofluid. Moreover, the simulated results demonstrate that adding nanoparticles into the base fluid can enhance both the motion of fluid and convection in the enclosure significantly.
引用
收藏
页码:2471 / 2484
页数:14
相关论文
共 36 条
[1]   Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids [J].
Abu-Nada, E. ;
Masoud, Z. ;
Hijazi, A. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2008, 35 (05) :657-665
[2]   Effect of nanofluid variable properties on natural convection in enclosures [J].
Abu-Nada, Eiyad ;
Masoud, Ziyad ;
Oztop, Hakan F. ;
Campo, Antonio .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (03) :479-491
[3]   Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection [J].
Abu-Nada, Eiyad .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (04) :679-690
[4]   Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid [J].
Abu-Nada, Eiyad ;
Oztop, Hakan F. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (04) :669-678
[5]   Natural convection of nanofluids in a shallow cavity heated from below [J].
Alloui, Z. ;
Vasseur, P. ;
Reggio, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (03) :385-393
[6]   Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure [J].
Aminossadati, S. M. ;
Ghasemi, B. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2009, 28 (05) :630-640
[7]  
[Anonymous], 2006, FLUENT 6 3 US GUID
[8]  
[Anonymous], 2007, SAE TECHNICAL PAPERS
[9]   Effects of uncertainties of viscosity models for Al2O3-water nanofluid on mixed convection numerical simulations [J].
Arefmanesh, Ali ;
Mahmoodi, Mostafa .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (09) :1706-1719
[10]  
Buongiorno J, P ICAPP