Hybrid magnetorheological elastomers enable versatile soft actuators

被引:62
作者
Angel Moreno-Mateos, Miguel [1 ]
Hossain, Mokarram [2 ]
Steinmann, Paul [3 ,4 ]
Garcia-Gonzalez, Daniel [1 ]
机构
[1] Univ Carlos III Madrid, Dept Continuum Mech & Struct Anal, Avda Univ 30, Madrid 28911, Spain
[2] Swansea Univ, Fac Sci & Engn, Zienkiewicz Ctr Computat Engn, Swansea SA1 8EN, W Glam, Wales
[3] Univ Erlangen Nurnberg, Inst Appl Mech, Egerland Str 5, Erlangen, Germany
[4] Univ Glasgow, Glasgow Computat Engn Ctr, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
BEHAVIOR; HOMOGENIZATION; VIBRATION;
D O I
10.1038/s41524-022-00844-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (approximate to 1-10 kPa stiffness) combining experimental and computational approaches. First, a comprehensive experimental characterisation is performed. The results unravel that the magneto-mechanical performance of hybrid MREs can be optimised by selecting an adequate mixing ratio between particles. Then, a multi-physics computational framework provides insights into the synergistic magneto-mechanical interactions at the microscale. Soft particles amplify the magnetisation and hard particles contribute to torsional actuation. Our numerical results suggest that the effective response of hybrid MREs emerges from these intricate interactions. Overall, we uncover exciting possibilities to push the frontiers of MRE solutions. These are demonstrated by simulating a bimorph beam that provides actuation flexibility either enhancing mechanical bending or material stiffening, depending on the magnetic stimulation.
引用
收藏
页数:14
相关论文
共 78 条
[31]   Soft micromachines with programmable motility and morphology [J].
Huang, Hen-Wei ;
Sakar, Mahmut Selman ;
Petruska, Andrew J. ;
Pane, Salvador ;
Nelson, Bradley J. .
NATURE COMMUNICATIONS, 2016, 7
[32]   Computational homogenization in magneto-mechanics [J].
Javili, A. ;
Chatzigeorgiou, G. ;
Steinmann, P. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (25-26) :4197-4216
[33]   A macroscopic model for magnetorheological elastomers based on microscopic simulations [J].
Kalina, Karl A. ;
Metsch, Philipp ;
Brummund, Joerg ;
Kaestner, Markus .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 193 :200-212
[34]   Microscale modeling and simulation of magnetorheological elastomers at finite strains: A study on the influence of mechanical preloads [J].
Kalina, Karl A. ;
Metsch, Philipp ;
Kaestner, Markus .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 102 :286-296
[35]  
Kallio M., 2005, The elastic and damping properties The elastic and damping properties
[36]   On finitely strained magnetorheological elastomers [J].
Kankanala, SV ;
Triantafyllidis, N .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (12) :2869-2908
[37]   A variationally consistent phase-field approach for micro-magnetic domain evolution at finite deformations [J].
Keip, M. -A. ;
Sridhar, A. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2019, 125 :805-824
[38]   A multiscale approach to the computational characterization of magnetorheological elastomers [J].
Keip, Marc-Andre ;
Rambausek, Matthias .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (04) :338-360
[39]   Development and characterization of a novel hybrid magnetorheological elastomer incorporating micro and nano size iron fillers [J].
Khayam, Sadia Umer ;
Usman, Muhammad ;
Umer, Malik Adeel ;
Rafique, Ahmed .
MATERIALS & DESIGN, 2020, 192
[40]   Ferromagnetic soft continuum robots [J].
Kim, Yoonho ;
Parada, German A. ;
Liu, Shengduo ;
Zhao, Xuanhe .
SCIENCE ROBOTICS, 2019, 4 (33)