Local and Nonlocal Singular Liouville Equations in Euclidean Spaces

被引:17
作者
Hyder, Ali [1 ]
Mancini, Gabriele [2 ]
Martinazzi, Luca [3 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] Univ Sapienza Roma, I-00185 Rome, Italy
[3] Univ Padua, I-35121 Padua, Italy
基金
瑞士国家科学基金会;
关键词
Q-curvature; fractional Laplacian; conformal geometry; GJMS-operator; CONSTANT Q-CURVATURE; INVARIANT 4TH-ORDER EQUATION; CONFORMAL METRICS; R-N; CLASSIFICATION; R-2M; UNIQUENESS; SYMMETRY;
D O I
10.1093/imrn/rnz149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the metrics of constant Q-curvature in the Euclidean space with a prescribed singularity at the origin, namely solutions to the equation (-Delta)(n/2)w = e(nw) - c delta(0) on R-n, under a finite volume condition. We analyze the asymptotic behavior at infinity and the existence of solutions for every n = 3 also in a supercritical regime. Finally, we state some open problems.
引用
收藏
页码:11393 / 11425
页数:33
相关论文
共 30 条
[1]  
Adimurthi, 2006, J EUR MATH SOC, V8, P171
[2]  
Bartolucci D, 2013, J GEOM ANAL, V23, P855, DOI 10.1007/s12220-011-9266-0
[3]  
Branson T., 1991, COMMUN PART DIFF EQ, V16, P1223, DOI DOI 10.1080/03605309108820797
[4]   SHARP INEQUALITIES, THE FUNCTIONAL DETERMINANT, AND THE COMPLEMENTARY SERIES [J].
BRANSON, TP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (10) :3671-3742
[5]   A note on a class of higher order conformally covariant equations [J].
Chang, SYA ;
Chen, WX .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (02) :275-281
[6]   ROTATIONAL SYMMETRY OF SOLUTIONS OF SOME NONLINEAR PROBLEMS IN STATISTICAL-MECHANICS AND IN GEOMETRY [J].
CHANILLO, S ;
KIESSLING, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (02) :217-238
[7]   QUALITATIVE PROPERTIES OF SOLUTIONS TO SOME NONLINEAR ELLIPTIC-EQUATIONS IN R(2) [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (02) :427-435
[8]  
Da Lio F, 2017, CALC VAR PARTIAL DIF, V56, DOI 10.1007/s00526-017-1245-2
[9]   BLOW-UP ANALYSIS OF A NONLOCAL LIOUVILLE-TYPE EQUATION [J].
Da Lio, Francesca ;
Martinazzi, Luca ;
Riviere, Tristan .
ANALYSIS & PDE, 2015, 8 (07) :1757-1805
[10]  
Fefferman C, 2003, MATH RES LETT, V10, P819, DOI 10.4310/MRL.2003.v10.n6.a9