Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions

被引:234
作者
Franck, Christian [1 ]
Maskarinec, Stacey A. [2 ]
Tirrell, David A. [2 ]
Ravichandran, Guruswami [3 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
来源
PLOS ONE | 2011年 / 6卷 / 03期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DIGITAL VOLUME CORRELATION; FOCAL ADHESIONS; LOCOMOTING CELLS; SUBSTRATE; ELASTICITY; MIGRATION; MOVEMENT; STRESSES; PHYSICS;
D O I
10.1371/journal.pone.0017833
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interactions between biochemical processes and mechanical signaling play important roles during various cellular processes such as wound healing, embryogenesis, metastasis, and cell migration. While traditional traction force measurements have provided quantitative information about cell matrix interactions in two dimensions, recent studies have shown significant differences in the behavior and morphology of cells when placed in three-dimensional environments. Hence new quantitative experimental techniques are needed to accurately determine cell traction forces in three dimensions. Recently, two approaches both based on laser scanning confocal microscopy have emerged to address this need. This study highlights the details, implementation and advantages of such a three-dimensional imaging methodology with the capability to compute cellular traction forces dynamically during cell migration and locomotion. An application of this newly developed three-dimensional traction force microscopy (3D TFM) technique to single cell migration studies of 3T3 fibroblasts is presented to show that this methodology offers a new quantitative vantage point to investigate the three-dimensional nature of cell-ECM interactions.
引用
收藏
页数:15
相关论文
共 46 条
[1]  
Ananthakrishnan R, 2007, INT J BIOL SCI, V3, P303
[2]  
[Anonymous], 2009, Theory of Elasticity
[3]   Methods and applications of digital volume correlation [J].
Bay, B. K. .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2008, 43 (08) :745-760
[4]   Digital volume correlation: Three-dimensional strain mapping using X-ray tomography [J].
Bay, BK ;
Smith, TS ;
Fyhrie, DP ;
Saad, M .
EXPERIMENTAL MECHANICS, 1999, 39 (03) :217-226
[5]   Traction fields, moments, and strain energy that cells exert on their surroundings [J].
Butler, JP ;
Tolic-Norrelykke, IM ;
Fabry, B ;
Fredberg, JJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 282 (03) :C595-C605
[6]   Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in? [J].
Buxboim, Amnon ;
Ivanovska, Irena L. ;
Discher, Dennis E. .
JOURNAL OF CELL SCIENCE, 2010, 123 (03) :297-308
[7]   DIGITAL SPECKLE-DISPLACEMENT MEASUREMENT USING A COMPLEX SPECTRUM METHOD [J].
CHEN, DJ ;
CHIANG, FP ;
TAN, YS ;
DON, HS .
APPLIED OPTICS, 1993, 32 (11) :1839-1849
[8]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[9]   Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry [J].
del Alamo, Juan C. ;
Meili, Ruedi ;
Alonso-Latorre, Baldomero ;
Rodriguez-Rodriguez, Javier ;
Aliseda, Alberto ;
Firtel, Richard A. ;
Lasheras, Juan C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (33) :13343-13348
[10]   Imaging the traction stresses exerted by locomoting cells with the elastic substratum method [J].
Dembo, M ;
Oliver, T ;
Ishihara, A ;
Jacobson, K .
BIOPHYSICAL JOURNAL, 1996, 70 (04) :2008-2022