FBH1 Catalyzes Regression of Stalled Replication Forks

被引:71
|
作者
Fugger, Kasper [1 ]
Mistrik, Martin [2 ]
Neelsen, Kai J. [3 ]
Yao, Qi [4 ]
Zellweger, Ralph [3 ]
Kousholt, Arne Nedergaard [1 ]
Haahr, Peter [1 ]
Chu, Wai Kit [4 ]
Bartek, Jiri [2 ,5 ]
Lopes, Massimo [3 ]
Hickson, Ian D. [4 ]
Sorensen, Claus Storgaard [1 ]
机构
[1] Univ Copenhagen, Biotech Res & Innovat Ctr, DK-2200 Copenhagen N, Denmark
[2] Palacky Univ, Fac Med & Dent, Inst Mol & Translat Med, Olomouc 77900, Czech Republic
[3] Univ Zurich, Inst Mol Canc Res, CH-8057 Zurich, Switzerland
[4] Univ Copenhagen, Panum Inst, Dept Cellular & Mol Med, Ctr Hlth Aging, DK-2200 Copenhagen N, Denmark
[5] Danish Canc Soc Res Ctr, DK-2100 Copenhagen O, Denmark
来源
CELL REPORTS | 2015年 / 10卷 / 10期
基金
新加坡国家研究基金会; 欧洲研究理事会; 瑞士国家科学基金会; 英国医学研究理事会;
关键词
DOUBLE-STRAND BREAKS; DNA-DAMAGE RESPONSE; HOMOLOGOUS RECOMBINATION; MAMMALIAN-CELLS; HELICASE; RESTART; RECOGNITION; CONTRIBUTES; MAINTENANCE; STRESS;
D O I
10.1016/j.celrep.2015.02.028
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.
引用
收藏
页码:1749 / 1757
页数:9
相关论文
共 50 条
  • [11] Analysis of protein dynamics at active, stalled, and collapsed replication forks
    Sirbu, Bianca M.
    Couch, Frank B.
    Feigerle, Jordan T.
    Bhaskara, Srividya
    Hiebert, Scott W.
    Cortez, David
    GENES & DEVELOPMENT, 2011, 25 (12) : 1320 - 1327
  • [12] FANCM regulates repair pathway choice at stalled replication forks
    Panday, Arvind
    Willis, Nicholas A.
    Elango, Rajula
    Menghi, Francesca
    Duffey, Erin E.
    Liu, Edison T.
    Scully, Ralph
    MOLECULAR CELL, 2021, 81 (11) : 2428 - +
  • [13] The DNA translocase activity of FANCM protects stalled replication forks
    Blackford, Andrew N.
    Schwab, Rebekka A.
    Nieminuszczy, Jadwiga
    Deans, Andrew J.
    West, Stephen C.
    Niedzwiedz, Wojciech
    HUMAN MOLECULAR GENETICS, 2012, 21 (09) : 2005 - 2016
  • [14] Stalled replication forks generate a distinct mutational signature in yeast
    Larsen, Nicolai B.
    Liberti, Sascha E.
    Vogel, Ivan
    Jorgensen, Signe W.
    Hickson, Ian D.
    Mankouri, Hocine W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (36) : 9665 - 9670
  • [15] Advances in understanding DNA processing and protection at stalled replication forks
    Rickman, Kimberly
    Smogorzewska, Agata
    JOURNAL OF CELL BIOLOGY, 2019, 218 (04): : 1096 - 1107
  • [16] DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication Forks inEscherichia coli
    Bianco, Piero R.
    GENES, 2020, 11 (05)
  • [17] Hyperthermia Inhibits Recombination Repair of Gemcitabine-Stalled Replication Forks
    Raoof, Mustafa
    Zhu, Cihui
    Cisneros, Brandon T.
    Liu, Heping
    Corr, Stuart J.
    Wilson, Lon J.
    Curley, Steven A.
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2014, 106 (08):
  • [18] PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation
    Ronson, George E.
    Piberger, Ann Liza
    Higgs, Martin R.
    Olsen, Anna L.
    Stewart, Grant S.
    McHugh, Peter J.
    Petermann, Eva
    Lakin, Nicholas D.
    NATURE COMMUNICATIONS, 2018, 9
  • [19] FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress
    Fugger, Kasper
    Chu, Wai Kit
    Haahr, Peter
    Kousholt, Arne Nedergaard
    Beck, Halfdan
    Payne, Miranda J.
    Hanada, Katsuhiro
    Hickson, Ian D.
    Sorensen, Claus Storgaard
    NATURE COMMUNICATIONS, 2013, 4
  • [20] How yeast cells deal with stalled replication forks
    Matan Arbel
    Batia Liefshitz
    Martin Kupiec
    Current Genetics, 2020, 66 : 911 - 915