Maximum-norm superapproximation of the gradient for the trilinear block finite element

被引:24
作者
Liu, Jinghong [1 ]
Zhu, Qiding [1 ]
机构
[1] Hunan Normal Univ, Sch Math & Comp Sci, Changsha 410081, Peoples R China
关键词
block element; discrete derivative Green's function; interpolation operator of projection type; superapproximation; weak estimate of the first type;
D O I
10.1002/num.20237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a model elliptic boundary value problem in three dimensions, we give the weak estimate of the first type for trilinear block elements and the estimate for W-1,W-1-seminorm of the discrete derivative Green's function over rectangular partitions of the domain, from which we obtain maximum-norm superapproximation of the gradient for the trilinear block finite element approximation. Furthermore, utilizing this superapproximation, we can also obtain maximum-norm superconvergence of the gradient. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1501 / 1508
页数:8
相关论文
共 17 条
  • [1] Brandts J, 2005, J COMPUT MATH, V23, P27
  • [2] Chen C. M., 1995, HIGH ACCURACY THEORY
  • [3] Chen C.M., 1980, NATUR SCI J XIANGTAN, V3, P16
  • [4] CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
  • [5] Goodsell G, 1990, RAL90031 SCI ENG RES
  • [6] GOODSELL G, 1994, NUMER METH PART D E, V10
  • [7] Kantchev V., 1986, P C OPT ALG BULG AC, P172
  • [8] LIN Q, 1996, STRUCTURE ANAL HIGH
  • [9] Lin Q., 1994, PREPROCESSING POSTPR
  • [10] Lin Q., 1991, P SYST SCI SYST ENG, P242